Graphene  Vol.2 No.3 , July 2013
Band Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins
ABSTRACT

Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Recently, various ways have been proposed to overcome this problem. In this study, we report a robust method to open a gap in graphene via noncovalent functionalization with porphyrin molecules. Two type of porphyrins, namely, iron protoporphyrin (FePP) and zinc protoporphryin (ZnPP) were independently physisorbed on graphene grown on nickel by chemical vapour deposition (CVD) resulting in a bandgap opening in graphene. Using a statistical analysis of scanning tunneling spectroscopy (STS) measurements, we demonstrated that the magnitude of the band gap depends on the type of deposited porphyrin molecule.The π-π stacking of FePP on graphene yielded a considerably larger band gap value (0.45 eV) than physisorbed ZnPP (0.23 eV). We proposed that the origin of different band gap value is governed due to the metallic character of the respective porphyrin.


Cite this paper
A.  , A. Castellanos-Gomez and B. van Wees, "Band Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins," Graphene, Vol. 2 No. 3, 2013, pp. 102-108. doi: 10.4236/graphene.2013.23015.
References
[1]   J. Wintterlin and M. L. Bocquet, “Graphene on Metal Surfaces,” Surface Science, Vol. 603, No. 10-12, 2009, pp. 1841-1852. doi:10.1016/j.susc.2008.08.037

[2]   X. S. Li, et al., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, Vol. 324, No. 5932, 2009, pp. 1312-1314. doi:10.1126/science.1171245

[3]   C. Berger, et al., “Ultrathin Epitaxial Graphite:? 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics,” The Journal of Physical Chemistry B, Vol. 108, No. 52, 2004, pp. 19912-19916. doi:10.1021/jp040650f

[4]   C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn and T. F. Heinz, “Ultraflat Graphene,” Nature, Vol. 462, No. 7271, 2009, pp. 339-341. doi:10.1038/nature08569

[5]   D. Martoccia, et al., “Graphene on Ru(0001): A 25 × 25 Supercell,” Physical Review Letters, Vol. 101, No. 12, 2008, p. 126102. doi:10.1103/PhysRevLett.101.126102

[6]   J. Coraux, A. T. N’Diaye, C. Busse and T. Michely, “Structural Coherency of Graphene on Ir(111),” Nano Letters, Vol. 8, No. 2, 2008, pp. 565-570. doi:10.1021/nl0728874

[7]   O. C. Compton and S. T. Nguyen, “Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials,” Small, Vol. 6, No. 6, 2010, pp. 711-723. doi:10.1002/smll.200901934

[8]   J. Lin, et al., “Gating of Single-Layer Graphene with Single-Stranded Deoxyribonucleic Acids,” Small, Vol. 6, No. 10, 2010, pp. 1150-1155. doi:10.1002/smll.200902379

[9]   X. C. Dong, et al., “Symmetry Breaking of Graphene Monolayers by Molecular Decoration,” Physical Review Letters, Vol. 102, No. 13, 2009, p. 135501. doi:10.1103/PhysRevLett.102.135501

[10]   D. Elias, et al., “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane,” Science, Vol. 323, No. 5914, 2009, pp. 610-613. doi:10.1126/science.1167130

[11]   R. Balog, et al., “Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption,” Nature Material, Vol. 9, 2010, pp. 315-319. doi:10.1038/nmat2710

[12]   T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the Electronic Structure of Bilayer Graphene,” Science, Vol. 313, No. 5789, 2006, pp. 951- 954. doi:10.1126/science.1130681

[13]   Y.W. Son, M. L. Cohen and S. G. Louie, “Half-Metallic Graphene Nanoribbons,” Nature, Vol. 444, No. 7117, 2006, pp. 347-349. doi:10.1038/nature05180

[14]   E. Rudberg, P. Salek and Y. Luo, “Nonlocal Exchange Interaction Removes Half-Metallicity in Graphene Nanoribbons,” Nano Letters, Vol. 7, No. 8, 2007, pp. 2211- 2213. doi:10.1021/nl070593c

[15]   Y. B. Zhang, et al., “Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene,” Nature, Vol. 459, No. 7248, 2009, pp. 820-823. doi:10.1038/nature08105

[16]   S. Y. Zhou, D. A. Siegel, A. V. Fedorov and A. Lanzara, “Metal to Insulator Transition in Epitaxial Graphene Induced by Molecular Doping,” Physical Review Letters, Vol. 101, No. 8, 2008, p. 086402. doi:10.1103/PhysRevLett.101.086402

[17]   Z. Zhang, H. Huang, X. Yang and L. Zang, “Tailoring Electronic Properties of Graphene by π-π Stacking with Aromatic Molecules,” The Journal of Physical Chemistry Letters, Vol. 2, No. 22, 2011, pp. 2897-2905. doi:10.1021/jz201273r

[18]   X. R. Wang, et al., “N-Doping of Graphene through Electrothermal Reactions with Ammonia,” Science, Vol. 324, No. 5928, 2009, pp. 768-771. doi:10.1126/science.1170335

[19]   X. C. Dong, D. L. Fu, W. J. Fang, Y. M. Shi, P. Chen and L. J. Li, “Doping Single-Layer Graphene with Aromatic Molecules,” Small, Vol. 5, No. 12 , 2009, pp. 1422-1426. doi:10.1126/science.1170335

[20]   Y. H. Zhang, K. G. Zhou, K. F. Xie, J. Zeng, H. L. Zhang and Y. Peng, “Tuning the Electronic Structure and Transport Properties of Graphene by Noncovalent Functionalization: Effects of Organic Donor, Acceptor And Metal Atoms,” Nanotechnology, Vol. 21, No. 6, 2010, p. 065201. doi:10.1088/0957-4484/21/6/065201

[21]   J. Otsuki, “STM Studies on Porphyrins,” Coordination Chemistry Reviews, Vol. 254, No. 19-20, 2010, pp. 2311- 2341. doi:10.1016/j.ccr.2009.12.038

[22]   N. J. Tao, G. Cardenas, F. Cunha and Z. Shi, “In Situ STM and AFM Study of Protoporphyrin and Iron(III) and Zinc(II) Protoporphyrins Adsorbed on Graphite in Aqueous Solutions,” Langmuir, Vol. 11, No. 11, 1995, pp. 4445-4448. doi:10.1021/la00011a043

[23]   T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno and S. Mashiko, “Selective Assembly on a Surface of Supramolecular Aggregates with Controlled Size and Shape,” Nature, Vol. 413, No. 6856, 2001, pp. 619-621. doi:10.1038/35098059

[24]   N. Wintjes, et al., “A Supramolecular Multiposition Rotary Device,” Angewandte Chemie International Edition, Vol 46, No. 22, 2007, pp. 4089-4092. doi:10.1002/anie.200700285

[25]   www.graphene-supermarket.com

[26]   Hyperchem Version 6.0.

[27]   P. Gargiani, M. Angelucci, C. Mariani and M. G. Betti, “Metal-Phthalocyanine Chains on the Au(110) Surface: Interaction States versus d-Metal States Occupancy,” Physical Review B, Vol. 81, No. 8, 2010, p. 085412. doi:10.1103/PhysRevB.81.085412

[28]   K. Petukhov, et al., “STM Spectroscopy of Magnetic Molecules,” Coordination Chemistry Review, Vol. 253, No. 19-20, 2009, pp. 2387-2398. doi:10.1016/j.ccr.2009.01.024

[29]   M. Wojtaszek, N. Tombros, A. Caretta, P. H. M. van Loosdrecht and B. J. van Wees, “A Road to Hydrogenating Graphene by a Reactive Ion Etching Plasma,” Journal Applied Physics, Vol. 110, No. 6, 2011, p. 063715. doi:10.1063/1.3638696

[30]   A. Castellanos-Gomez, M. Wojtaszek, Arramel, N. Tombros and B. J. van Wees, “Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy,” Small, Vol. 8, No. 10, 2012, pp. 1607-1613. doi:10.1002/smll.201101908

[31]   P. M. Panchmatia, B. Sanyal and P. M. Oppeneer, “GGA + U Modeling of Structural, Electronic, and Magnetic Properties of Iron Porphyrin-Type Molecules,” Chemical Physics, Vol. 343, No. 1, 2008, pp. 47-60. doi:10.1016/j.chemphys.2007.10.030

[32]   W. Dou, S. Huang, R. Q. Zhang and C. S. Lee, “Molecule-Substrate Interaction Channels of Metal-Phthalocyanines on Graphene on Ni(111) Surface,” Journal of Chemical Physics, Vol. 134, No. 9, 2011, p. 094705. doi:10.1063/1.3561398

[33]   H. Vázquez, W. Gao, F. Flores and A. Kahn, “Energy Level Alignment at Organic Heterojunctions: Role of the Charge Neutrality Level,” Physical Review B, Vol. 71, No. 4, 2005, p. 041306(R). doi:10.1103/PhysRevB.71.041306

[34]   F. Evangelista, et al., “Electronic States of CuPc Chains on the Au(110) Surface,” Journal Chemical Physics, Vol. 131, No. 17, 2009, p. 174710. doi:10.1063/1.3257606

 
 
Top