Back
 AJPS  Vol.4 No.7 , July 2013
Expression Profiling of Genes Associated with Cyanogenesis in Three Cassava Cultivars Containing Varying Levels of Toxic Cyanogens
Abstract: Cyanogenic glycosides, linamarin and lotaustralin, are presents in all tissues of Cassava (Manihot esculenta Crantz) except seeds and function as a deterrent for herbivores as well as the translocable form of reduced nitrogen. The genes involved in the cyanogenic pathway [CYP79D1/D2 (EC 1.14.13), linamarase (EC 3.2.1.21), α-hydroxynitrile lyase (HNL, acetone-cyanohydrin lyase. EC 4.1.2.37) and b-cyanoalanine synthase (β-CAS. EC 4.4.1.9] have been identified and partially characterized. Our objective was to identify the differential expression pattern of these genes in leaves and roots of three cassava cultivars with varying levels of cyanogenic glucosides. The results show that the differential ex- pression of the genes between leaves and roots is consistent with leaves being the primary site of synthesize of cyano- genic glucosides, which are then translocated to the roots. In addition, the varietal difference for cyanogenic glucoside levels could be explained in part by the combinatorial effort of the synthesis in the leaves and the linamarase catabolic step in the roots. Cluster analysis suggests a coordinated expression between CYP79D1/D2 and β-CAS genes as well as linamarase and HNL genes, which is in agreement with the spatial separation within a cell of the site of linamarin syn- thesis (vacuolar) and its breakdown to cyanide (cell wall). Furthermore, cluster analysis for cultivar classification using its gene expression profile match with the reported cyanide levels comparatively for the three cultivars. This is the first study that evaluates the transcriptional activities of the genes involved in the cyanogenic glycoside metabolism using a systematic approach.
Cite this paper: M. Echeverry-Solarte, V. Ocasio-Ramirez, A. Figueroa, E. González and D. Siritunga, "Expression Profiling of Genes Associated with Cyanogenesis in Three Cassava Cultivars Containing Varying Levels of Toxic Cyanogens," American Journal of Plant Sciences, Vol. 4 No. 7, 2013, pp. 1533-1545. doi: 10.4236/ajps.2013.47185.
References

[1]   H. Ceballos, “La Yuca en Colombia y el Mundo: Nuevas Perspectivas Para un Cultivo Milenario,” In: H. Ceballos and B. Ospina, Eds., La Yuca en el Tercer Milenio, CIAT., Cali, 2002, pp. 1-13.

[2]   M. El-Sharkawy, “Cassava Biology and Physiology,” Plant Molecular Biology, Vol. 56, No. 4, 2004, pp. 481-501. doi:10.1007/s11103-005-2270-7

[3]   M. Mejia de Tafur, “Fisiología de la yuca (Manihot esculenta Crantz),” In: H. Ceballos and B. Ospina, Eds., La Yuca en el Tercer Milenio, CIAT., Cali, 2002, pp. 34-45.

[4]   J. McMahon, W. White and R. T. Sayre, “Cyanogenesis in Cassava (Manihot esculenta Crantz),” Journal of Experiment Botany, Vol. 46, No. 7, 1995, pp. 731-741. doi:10.1093/jxb/46.7.731

[5]   W. White, D. Arias-Garzon, J. McMahon and R. T. Sayre, “Cyanogenesis in Cassava: The Role of Hydroxynitrile Lyase in Root Cyanide Production,” Plant Physiology, Vol. 116, No. 4, 1998, pp. 1219-1225. doi:10.1104/pp.116.4.1219

[6]   K. Jørgensen, S. Bak, P. K. Busk, C. Sørensen, C. E. Olsen, J. Pounti-Kaerlas, B. L. Møller, “Cassava Plants with Depleted Cyanogenic Glucoside Content in Leaves and Tubers. Distribution of Cyanogenic Glucosides, Their Site of Synthesis and Transport, and Blockage of the Biosynthesis by RNA Interference Technology,” Plant Physiology, Vol. 139, No. 1, 2005, pp. 363-374. doi:10.1104/pp.105.065904

[7]   D. Siritunga and R. T. Sayre, “Engineering Cyanogen Synthesis and Turnover in Cassava (Manihot esculenta),” Plant Molecular Biology, Vol. 56, No. 4, 2004, pp. 661-669. doi:10.1007/s11103-004-3415-9

[8]   A. Cardoso, P. Ernesto, M. Cliff and J. H. Bradbury, “High Levels of Total Cyanogens in Cassava Flour Related to Drought in Mozambique,” Roots, Vol. 6, 1999, pp. 4-6.

[9]   M. A. Santana, V. Vasquez, J. Matehus and R. R. Aldao, “Linamarase Expression in Cassava Cultivars with Roots of Low-and High-Cyanide Content,” Plant Physiology, Vol. 129, No. 4, 2002, pp. 1686-1694. doi:10.1104/pp.000927

[10]   O. Mkpong, H. Yan, G. Chism and R. T. Sayre, “Purification, Characterization, and Localization of Linamarase in Cassava,” Plant Physiology, Vol. 93, No. 1, 1990, pp. 176-181. doi:10.1104/pp.93.1.176

[11]   M. D. Andersen, P. K. Busk, I. Svendsen and B. L. Møller, “Cytochromes P-450 from Cassava (Manihot esculenta Crantz) Catalyzing the First Steps in the Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin,” Journal of Biological Chemistry, Vol. 275, No. 3, 2000, pp. 1966-1975. doi:10.1074/jbc.275.3.1966

[12]   M. A. Hughes, K. Brown, A. Pancoro, S. Murray, E .Oxtoby and J. Hughes, “A Molecular and Biochemistry Analysis of the Structure of the Cyanogenic ß-Glucosidase (Linamarase) from Cassava (Manihot esculenta Crantz),” Archives of Biochemistry and Biophysics, Vol. 295, No. 2, 1992, pp. 273-279. doi:10.1016/0003-9861(92)90518-2

[13]   J. Hughes, F. J. Carvallo, C. De and M. A. Hughes, “Purification, Characterization, and Cloning of Hydroxynitrile Lyase from Cassava (Manihot esculenta Crantz),” Archives of Biochemistry and Biophysics, Vol. 311, No. 2, 1994, pp. 496-502. doi:10.1006/abbi.1994.1267

[14]   B. Koch, V. S. Nielsen, B. A. Halkier, C. E. Olsen and B. L. Moller, “The Biosynthesis of Cyanogenic Glucosides in Seedlings of Cassava (Manihot esculenta Crantz,” Archives of Biochemistry and Biophysics, Vol. 292, No. 1, 1992, pp. 141-150. doi:10.1016/0003-9861(92)90062-2

[15]   D. Selmar, R. Lieberei, B. Biehl and E. E. Conn, “Hevea Linamarase a Non Specific ß-Glycosidase,” Plant Physiology, Vol. 83, No. 3, 1989, pp. 557-63. doi:10.1104/pp.83.3.557

[16]   D. Selmar, “Translocation of Cyanogenic Glucosides in Cassava,” Acta Horticulturae, Vol. 375, 1994, pp. 61-67.

[17]   D. Siritunga and R. T. Sayre, “Generation of CyanogenFree Transgenic Cassava,” Planta, Vol. 217, No. 3, 2003, pp. 367-373. doi:10.1007/s00425-003-1005-8

[18]   F. Nartey, “Studies on Cassava Manihot utillisima, Biostnthesis of Asparagines-14C from 14C-Labelled Hydrogen Cyanide and Its Relations with Cyanogenesis,” Physiologia Plantarum, Vol. 22, No. 5, 1969, pp. 1085-1096. doi:10.1111/j.1399-3054.1969.tb07470.x

[19]   P. M. Dunhill and L. Fowden, “Enzymatic Formation of ß-Cyanoalanine from Cyanide by Escherichia coli Extracts,” Nature, Vol. 208, No. 5016, 1965, pp. 1206-1207. doi:10.1038/2081206a0

[20]   H. G. Floss, L. Hadwiger and E. E. Conn, “Enzymatic Formation of ß-Cyanoalanine from Cyanide,” Nature, Vol. 208, 1965, No. 5016, pp. 1207-1208. doi:10.1038/2081207a0

[21]   P. A. Castric, K. J. Farnden and E. E. Conn, “Cyanide Metabolism in Higher Plants: The Formation of Asparagine from ß-Cyanoalanine,” Archives of Biochemistry and Biophysics, Vol. 152, No. 1, 1972, pp. 62-69. doi:10.1016/0003-9861(72)90193-2

[22]   M. Makame, M. Akoroda and S. Hahn, “Effects of Reciprocal Stem Grafts on Cyanide Translocation in Cassava,” Journal of Agricultural Sciences, Vol. 109, No. 3, 1987, pp. 605-608. doi:10.1017/S0021859600081855

[23]   T. Ramanujam and P. Indira, “Effect of Girdling on the Distribution of Total Carbohydrates and Hydrocyanic Acid in Cassava,” Indian Journal of Plant Physiology, Vol. 27, 1984, pp. 355-360.

[24]   H. Dagher, H. Donninger, P. Hutchinson, R. Ghildyal and P. Bardin, “Rhinovirus Detection: Comparison of RealTime and Conventional PCR,” Journal of Virology Methods, Vol. 117, No. 2, 2004, pp. 113-121. doi:10.1016/j.jviromet.2004.01.003

[25]   M. T. Dorak, “Real-Time PCR,” In: M. T. Dorak, Ed., Real-Time PCR (Advanced Methods Series), Taylor & Francis, Oxford, 2006, pp. 1-33.

[26]   M. Elias, B. Nambisan and P. R. Sudhakaran, “Catabolism of Linamarin in Cassava,” Plant Science, Vol. 126, No. 2, 1997, pp. 155-162. doi:10.1016/S0168-9452(97)00100-3

[27]   M. Elias, P. Sudhakaran and B. Nambisan, “Purification and Characterization of ß-Cyanoalanine Synthase from Cassava Tissues,” Phytochemistry, Vol. 46, No. 3, 1997, pp. 469-472. doi:10.1016/S0031-9422(97)00305-1

 
 
Top