AMPC  Vol.3 No.3 , July 2013
Controllable Hydrothermal Synthesis of MnO2 Nanostructures
Various MnO2 nanostructures with controlling phases and morphologies, like α-MnO2 nanorods, nanotubes, nanocubes, nanowires and β-MnO2 cylinder/spindle-like nanosticks have been successfully prepared by hydrothermal method, which is simply tuned by changing the ratio of Mn precursor solution to HCl, Mn(Ac)2·4H2O or C6H12O6·H2O, surfactants and reaction temperature and time. The study found out that temperature is a crucial key to get a uniform and surface-smooth nanorod. High ratio of KMnO4 to HCl leads to well dispersed MnO2 nanorods and changing the precursor of HCl into Mn(Ac)2·4H2O or C6H12O6·H2O results in forming nanowires or nanocubes. Different shapes such as cylinder/spindle-like nanosticks could be obtained by adding surfactants. Since the properties rely on the structure of materials firmly, these MnO2 products would be potentially used in supercapacitor and other energy storage applications.

Cite this paper
J. Wu, H. Huang, L. Yu and J. Hu, "Controllable Hydrothermal Synthesis of MnO2 Nanostructures," Advances in Materials Physics and Chemistry, Vol. 3 No. 3, 2013, pp. 201-205. doi: 10.4236/ampc.2013.33029.
[1]   X. Lang, A. Hirata, T. Fujita and M. Chen, “Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors,” Nature Nanotechnology, Vol. 6, No. 4, 2011, pp. 232-236. doi:10.1038/nnano.2011.13

[2]   W. Wei, X. Cui, W. Chen and D. G. Ivey, “Manganese Oxide-Based Materials as Electrochemical Supercapacitor Electrodes,” Chemical Society Reviews, Vol. 40, No. 3, 2011, pp. 1697-1721. doi:10.1039/c0cs00127a

[3]   W. Li, G. Li, J. Sun, R. Zou, K. Xu, Y. Sun, Z. Chen, J. Yang and J. Hu, “Hierarchical Heterostructures of MnO2 Nanosheets or Nanorods Grown on Au-Coated Co3O4 Porous Nanowalls for High-Performance Pseudocapacitance,” Nanoscale, Vol. 5, No. 7, 2013, pp. 2901-2908. doi:10.1039/c3nr34140b

[4]   W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen and J. Hu, “MnO2 Ultralong Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances,” Journal of Materials Chemistry, Vol. 22, No. 30, 2012, pp. 1486414867. doi:10.1039/c2jm33368f

[5]   B. Li, G. Rong, Y. Xie, L. Huang and C. Feng, “LowTemperature Synthesis of Alpha-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries,” Inorganic Chemistry, Vol. 45, No. 16, 2006, pp. 64046410. doi:10.1021/ic0606274

[6]   A. Debart, A. J. Paterson, J. Bao and P. G. Bruce, “Alpha-MnO(2) Nanowires: A Catalyst for the O(2) Electrode in Rechargeable Lithium Batteries,” Angewandte Chemie-International Edition, Vol. 47, No. 24, 2008, pp. 4521-4524. doi:10.1002/anie.200705648

[7]   A. K. Thapa, Y. Hidaka, H. Hagiwara, S. Ida and T. Ishihara, “Mesoporous Beta-MnO2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery,” Journal of the Electrochemical Society, Vol. 158, No. 12, 2011, pp. A1483-A1489. doi:10.1149/2.090112jes

[8]   A. K. Thapa and T. Ishihara, “Mesoporous Alpha-MnO2/ Pd Catalyst Air Electrode for Rechargeable Lithium-Air Battery,” Journal of Power Sources, Vol. 196, No. 16, 2011, pp. 7016-7020. doi:10.1016/j.jpowsour.2010.09.112

[9]   T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier and D. Belanger, “Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors,” Journal of the Electrochemical Society, Vol. 153, No. 12, 2006, pp. A2171-A2180. doi:10.1149/1.2352197

[10]   P. Ragupathy, D. H. Park, G. Campet, H. N. Vasan, S.-J. Hwang, J.-H. Choy and N. Munichandraiah, “Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor,” Journal of Physical Chemistry C, Vol. 113, No. 15, 2009, pp. 6303-6309. doi:10.1021/jp811407q

[11]   J. Ni, W. Lu, L. Zhang, B. Yue, X. Shang and Y. Lv, “Low-Temperature Synthesis of Monodisperse 3D Manganese Oxide Nanoflowers and Their Pseudocapacitance Properties,” Journal of Physical Chemistry C, Vol. 113, No. 1, 2009, pp. 54-60. doi:10.1021/jp806454r

[12]   X. Wang, A. Yuan and Y. Wang, “Supercapacitive Behaviors and Their Temperature Dependence of Sol-Gel Synthesized Nanostructured Manganese Dioxide in Lithium Hydroxide Electrolyte,” Journal of Power Sources, Vol. 172, No. 2, 2007, pp. 1007-1011. doi:10.1016/j.jpowsour.2007.07.066

[13]   T. T. Truong, Y. Liu, Y. Ren, L. Trahey and Y. Sun, “Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium-Air Batteries,” Acs Nano, Vol. 6, No. 9, 2012, pp. 8067-8077. doi:10.1021/nn302654p

[14]   W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow and S. L. Suib, “Hydrothermal Synthesis of Structureand Shape-Controlled Manganese Oxide Octahedral Molecular Sieve Nanomaterials,” Advanced Functional Materials, Vol. 16, No. 9, 2006, pp. 1247-1253. doi:10.1002/adfm.200500504

[15]   G. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford and S. L. Suib, “Hydrothermal Synthesis of Manganese Oxide Nanomaterials and Their Catalytic and Electrochemical Properties,” Chemistry of Materials, Vol. 23, No. 17, 2011, pp. 3892-3901. doi:10.1021/cm2011692

[16]   S. Devaraj and N. Munichandraiah, “Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties,” Journal of Physical Chemistry C, Vol. 112, No. 11, 2008, pp. 4406-4417. doi:10.1021/jp7108785

[17]   D. Soundararajan, Y. I. Kim, J.-H. Kim, K. H. Kim and J. M. Ko, “Hydrothermal Synthesis and Electrochemical Characteristics of Crystalline Alpha-MnO2 Nanotubes,” Science of Advanced Materials, Vol. 4, No. 8, 2012, pp. 805812. doi:10.1166/sam.2012.1348

[18]   Y. W. Jun, S. M. Lee, N. J. Kang and J. Cheon, “Controll ed Synthesis of Multi-Armed CdS Nanorod Architectures Using Monosurfactant System,” Journal of the American Chemical Society, Vol. 123, No. 21, 2001, pp. 5150-5151. doi:10.1021/ja0157595

[19]   J. Fei, Y. Cui, X. Yan, W. Qi, Y. Yang, K. Wang, Q. He and J. Li, “Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment,” Advanced Materials, Vol. 20, No. 3, 2008, pp. 452-454. doi:10.1002/adma.200701231