Social Balance in the Triangle-Growing Networks

Show more

References

[1] F. Heider, “Social Perception and Phenomenal Causality,” Psychological Review, Vol. 51, No. 6, 1944, pp. 358- 374. doi:10.1037/h0055425

[2] R. K. Leik and B. F. Meeker, “Mathematical Sociology,” Prentice-Hall, Englewood Cliffs, 1975.

[3] P. Bonacich and P. Lu, “Introduction to Mathematical Sociology,” Princeton University Press, Princeton, 2012.
http://www.sscnet.ucla.edu/soc/faculty/bonacich

[4] N. P. Hummon and T. J. Fararo, “The Emergence of Computational Sociology,” Journal of Mathematical Sociology, Vol. 20, No. 2-3, 1995, pp. 145-159.
doi:10.1080/0022250X.1995.9990159

[5] N. P. Hummon and P. Doreian, “Some Dynamics of Social Balance Processes: Bringing Heider Back into Balance Theory,” Social Networks, Vol. 25, No. 1, 2003, pp. 17-49. doi:10.1016/S0378-8733(02)00019-9

[6] T. Antal, P. L. Krapivsky and S. Redner, “Dynamics of Social Balance on Networks,” Physical Review E, Vol. 72, 2005, Article ID: 036121.

[7] F. Radicchi, D. Vilone and H. Meyer-Ortmanns, “Universality Class of Triad Dynamics on a Triangular Lattice,” Physical Review E, Vol. 75, 2007, Article ID: 021118.

[8] F. Radicchi, D. Vilone, S. Yoon and H. Meyer-Ortmanns, “Social Balance as a Satisfiability Problem of Computer Science,” Physical Review E, Vol. 75, 2007, Article ID: 026106.

[9] Q.-K. Meng, “Self-Organized Criticality in Small-World Networks Based on the Social Balance Dynamics,” Chinese Physics Letters, Vol. 28, 2011, Article ID: 118901.

[10] C. Castellano, S. Fortunato and V. Loreto, “Statisticalphysics of Social Dynamics,” Reviews of Modern Physics, Vol. 81, 2009, pp. 591-646.

[11] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks,” Advances in Physics, Vol. 51, 2002, pp. 1079- 1181.

[12] A.-L. Barab’asi and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol. 286, No. 5439, 1999, pp. 509-512. doi:10.1126/science.286.5439.509

[13] B. Bollobas, “Degree Sequences of Random Graphs,” Discrete Mathematics, Vol. 33, No. 1, 1981, pp. 1-19.
doi:10.1016/0012-365X(81)90253-3

[14] F. Chung, and L. Lu, “The Diameter of Sparse Random Graphs,” Advances in Applied Mathematics, Vol. 26, No. 4, 2001, pp. 257-279. doi:10.1006/aama.2001.0720

[15] S. Wasserman and K. Faust, “Social Network Analysis: Methods and Applications,” Cambridge University, Cambridge, 1994.