JCT  Vol.4 No.6 , August 2013
The Role of Thymidylate Synthase in Pemetrexed-Resistant Malignant Pleural Mesothelioma Cells
ABSTRACT

We established new pemetrexed-resistant cells originating from malignant pleural mesothelioma MSTO-211H cells to clarify the mechanism involved in pemetrexed resistance in malignant pleural mesothelioma. In the pemetrexed-resistant cells, only thymidylate synthase (TYMS) mRNA was overexpressed among other well-known molecular targets and chemosensitivity determinants of pemetrexed, and the role of the TYMS gene was ascertained by artificial regulation induced by specific siRNA. Silencing the TYMS expression partially restored the cytotoxicity of pemetrexed. The resistant cells did not display other gene alterations related to folate metabolism. We conclude that the primary mechanism imparting resistance to these cells is specific up-regulation of TYMS function. Further, the TYMS gene may serve as a useful biomarker for the prediction of pemetrexed chemosensitivity in patients with malignant pleural mesothelioma. We also investigated the efficacy of 1-(3-C-ethynyl-β-D-ribo-pento furanosyl)cytosine (ECyd) in overcoming pemetrexed resistance; this compound is presently undergoing clinical trials in the USA as TAS-106. ECyd had a similar antitumor effect on the resistant cells as that on the parental cells. In the clinical treatment of malignant pleural mesothelioma, ECyd promises to emerge as a novel drug.


Cite this paper
T. Obata, M. Tanaka, Y. Suzuki and T. Sasaki, "The Role of Thymidylate Synthase in Pemetrexed-Resistant Malignant Pleural Mesothelioma Cells," Journal of Cancer Therapy, Vol. 4 No. 6, 2013, pp. 1052-1059. doi: 10.4236/jct.2013.46119.
References
[1]   M. Pistolesi and J. Rusthoven, “Malignant Pleural Mesothelioma: Update, Current Management, and Newer Therapeutic Strategies,” Chest, Vol. 126, No. 4, 2004, pp. 1318-1329. doi:10.1378/chest.126.4.1318

[2]   M. E. Ramos-Nino, J. R. Testa, D. A. Altomare, H. I. Pass, M. Carbone, M. Bocchetta and B. T. Mossman, “Cellular and Molecular Parameters of Mesothelioma,” Journal of Cellular Biochemistry, Vol. 98, No. 4, 2006, pp. 723-734. doi:10.1002/jcb.20828

[3]   B. W. Robinson and R. A. Lake, “Advances in Malignant Mesothelioma,” New England Journal of Medicine, Vol. 353, No. 15, 2005, pp. 1591-1603. doi:10.1056/NEJMra050152

[4]   J. P. Steele and A. Klabatsa, “Chemotherapy Options and New Advances in Malignant Pleural Mesothelioma,” Annals of Oncology, Vol. 16, No. 3, 2005, pp. 345-351. doi:10.1093/annonc/mdi094

[5]   M. Hazarika, R. M. White, J. R. Johnson and R. Pazdur, “FDA Drug Approval Summaries: Pemetrexed (Alimta),” Oncologist, Vol. 9, No. 5, 2004, pp. 482-488.

[6]   S. Chattopadhyay, R. G. Moran and I. D. Goldman, “Pemetrexed: Biochemical and Cellular Pharmacology, Mechanisms, and Clinical Applications,” Molecular Cancer Therapeutics, Vol. 6, No. 2, 2007, pp. 404-417. doi:10.1158/1535-7163.MCT-06-0343

[7]   M. Hazarika, R. M. White Jr., B. P. Booth, Y. C. Wang, D. Y. Ham, C. Y. Liang, A. Rahman, J. V. Gobburu, N. Li, R. Sridhara, D. E. Morse, R. Lostritto, P. Garvey, J. R. Johnson and R. Pazdur, “Pemetrexed in Malignant Pleural Mesothelioma,” Clinical Cancer Research, Vol. 11, No. 3, 2005, pp. 982-992.

[8]   R. Zhao and I. D. Goldman, “Resistance to Antifolates,” Oncogene, Vol. 22, No. 47, 2003, pp. 7431-7457.

[9]   N. Hagner and M. Joerger, “Cancer Chemotherapy: Targeting Folic Acid Synthesis,” Cancer Management and Research, Vol. 2, 2010, pp. 293-301.

[10]   J. Sigmond, H. H. Backus, D. Wouters, O. H. Temmink, G. Jansen and G. J. Peters, “Induction of Resistance to the Multitargeted Antifolate Pemetrexed (ALIMTA) in WiDr Human Colon Cancer Cells Is Associated with Thymidylate Synthase Overexpression,” Biochemical Pharmacology, Vol. 66, No. 3, 2003, pp. 431-438. doi:10.1016/S0006-2952(03)00287-9

[11]   D. B. Longley, P. R. Ferguson, J. Boyer, T. Latif, M. Lynch, P. Maxwell, D. P. Harkin and P. G. Johnston, “Characterization of a Thymidylate Synthase (TS)-Inducible Cell Line: A Model System for Studying Sensitivity to TSand Non-TS-Targeted Chemotherapies,” Clinical Cancer Research, Vol. 7, No. 11, 2001, pp. 3533-3539.

[12]   J. H. Kim, K. W. Lee, Y. Jung, T. Y. Kim, H. S. Ham, H. S. Jong, K. H. Jung, S. A. Im, T. Y. Kim, N. K. Kim and Y. J. Bang, “Cytotoxic Effects of Pemetrexed in Gastric Cancer Cells,” Cancer Science, Vol. 96, No. 6, 2005, pp. 365-371. doi:10.1111/j.1349-7006.2005.00058.x

[13]   H. Ozasa, T. Oguri, T. Uemura, M. Miyazaki, K. Maeno, S. Sato and R. Ueda, “Significance of Thymidylate Synthase for Resistance to Pemetrexed in Lung Cancer,” Cancer Science, Vol. 101, No. 1, 2010, pp. 161-166. doi:10.1111/j.1349-7006.2009.01358.x

[14]   D. Zhang, N. Ochi, N. Takigawa, Y. Tanimoto, Y. Chen, E. Ichihara, K. Hotta, M. Tabata, M. Tanimoto and K. Kiura, “Establishment of Pemetrexed-Resistant Non-Small Cell Lung Cancer Cell Lines,” Cancer Letters, Vol. 309, No. 2, 2011, pp. 228-235. doi:10.1016/j.canlet.2011.06.006

[15]   Y. Wang, R. Zhao and I. D. Goldman, “Decreased Expression of the Reduced Folate Carrier and Folypolyglutamate Synthetase Is the Basis for Acquired Resistance to the Pemetrexed Antifolate (LY231514) in an L1210 Murine Leukemia Cell Line,” Biochemical Pharmacology, Vol. 65, No. 7, 2003, pp. 1163-1170. doi:10.1016/S0006-2952(03)00007-8

[16]   Q. Zhang, Y. P. Zhao, Q. Liao, Y. Hu, Q. Xu, L. Zhou and H. Shu, “Associations between Gene Polymorphisms of Thymidylate Synthase with Its Protein Expression and Chemosensitivity to 5-Fluorouracil in Pancreatic Carcinoma Cells,” Chinese Medical Journal (English Edition), Vol. 124, No. 2, 2011, pp. 262-267.

[17]   K. Kawakami and G. Watanabe, “Identification and Functional Analysis of Single Nucleotide Polymorphism in the Tandem Repeat Sequence of Thymidylate Synthase Gene,” Cancer Research, Vol. 63, No. 18, 2003, pp. 6004-6007.

[18]   N. Nief, V. Le Morvan and J. Robert, “Involvement of Gene Polymorphisms of Thymidylate Synthase in Gene Expression, Protein Activity and Anticancer Drug Cytotoxicity Using the NCI-60 Panel,” European Journal of Cancer, Vol. 43, No. 5, 2007, pp. 955-962. doi:10.1016/j.ejca.2006.12.012

[19]   M. Gusella and R. Padrini, “G>C SNP of Thymidylate Synthase with Respect to Colorectal Cancer,” Pharmacogenomics, Vol. 8, No. 8, 2007, pp. 985-996. doi:10.2217/14622416.8.8.985

[20]   L. A. Hammond-Thelin, M. B. Thomas, M. Iwasaki, J. L. Abbruzzese, Y. Lassere, C. A. Meyers, P. Hoff, J. de Bono, J. Norris, H. Matsushita, A. Mita and E. K. Rowinsky, “Phase I and Pharmacokinetic Study of 3’-C-ethynylcytidine (TAS-106), an Inhibitor of RNA Polymerase I, II and III, in Patients with Advanced Solid Malignancies,” Investigational New Drugs, Vol. 30, No. 1, 2012, pp. 316-326. doi:10.1007/s10637-010-9535-y

[21]   B. Friday, Y. Lassere, C. A. Meyers, A. Mita, J. L. Abbruzzese and M. B. Thomas, “A Phase I Study to Determine the Safety and Pharmacokinetics of Intravenous Administration of TAS-106 Once per Week for Three Consecutive Weeks Every 28 Days in Patients with Solid Tumors,” Anticancer Research, Vol. 32, No. 5, 2012, pp. 1689-1696.

[22]   S. Tabata, M. Tanaka, A. Matsuda, M. Fukushima and T. Sasaki, “Antitumor Effect of a Novel Multifunctional Antitumor Nucleoside, 3’-Ethynylcytidine, on Human Cancers,” Oncology Reports, Vol. 3, No. 6, 1996, pp. 1029-1034.

[23]   M. Tanaka, S. Tabata, A. Matsuda, M. Fukushima, K. Eshima and T. Sasaki, “Antitumor Effect and Mechanism of a Novel Multifunctional Nucleoside, 3’-Ethynylnucleoside, on Human Cancers,” Gan to Kagaku Ryoho, Vol. 24, No. 4, 1997, pp. 476-482.

[24]   S. Tabata, M. Tanaka, Y. Endo, T. Obata, A. Matsuda and T. Sasaki, “Anti-Tumor Mechanisms of 3’-Ethynyluridine and 3’-Ethynylcytidine as RNA Synthesis Inhibitors: Development and Characterization of 3’-Ethynyluridine-Resistant Cells,” Cancer Letters, Vol. 116, No. 2, 1997, pp. 225-231. doi:10.1016/S0304-3835(97)00188-2

[25]   A. Matsuda, M. Fukushima, Y. Wataya and T. Sasaki, “A New Antitumor Nucleoside, 1-(3-C-ethynyl-?-D-ribo-pentofuranosyl)cytosine (ECyd), Is a Potent Inhibitor of RNA Synthesis,” Nucleosides Nucleotides, Vol. 18, No. 4-5, 1999, pp. 811-814. doi:10.1080/15257779908041568

[26]   A. Azuma, A. Matsuda, T. Sasaki and M. Fukushima, “1-(3-C-ethynyl-?-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106)1: Antitumor Effect and Mechanism of Action,” Nucleosides Nucleotides Nucleic Acids, Vol. 20, No. 4-7, 2001, pp. 609-619. doi:10.1081/NCN-100002337

[27]   A. Matsuda and T. Sasaki, “Antitumor Activity of SugarModified Cytosine Nucleosides,” Cancer Science, Vol. 95, No. 2, 2004, pp. 105-111. doi:10.1111/j.1349-7006.2004.tb03189.x

[28]   D. Murata, Y. Endo, T. Obata, K. Sakamoto, Y. Syouji, M. Kadohira, A. Matsuda and T. Sasaki, “A Crucial Role of Uridine/Cytidine Kinase 2 in Antitumor Activity of 3’Ethynyl Nucleosides,” Drug Metabolism and Disposition, Vol. 32, No. 10, 2004, pp. 1178-1182. doi:10.1124/dmd.104.000737

 
 
Top