A Mathematically Creative Four-Year-Old—What Do We Learn from Him?

Show more

References

[1] Bahar, A. K., & Maker, C. J. (2011). Exploring the relationship be tween mathematical creativity and mathematical achievement. Asia Pacific Journal of Gifted and Talented Education, 3, 33-48.

[2] Bishop, A. J. (2002). Mathematical acculturation, cultural conflicts, and transition. In G. de Abreu, A. J. Bishop, & N. C. Presmeg (Eds.), Transitions between contexts of mathematical practices (pp. 193-212). Dordrecht: Kluwer Academic Press.
doi:10.1007/0-306-47674-6_10

[3] Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15, 179-202.
doi:10.2307/748348

[4] Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of problem solving: A study of kindergarten chil dren’s problem-solving processes. Journal for Research in Mathe matics Education, 24, 428-441. doi:10.2307/749152

[5] Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). Children’s mathematics: Cognitively guided instruction. Ports mouth, NH: Heinemann.

[6] Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanc ed mathematical thinking (pp. 42-53). Dordrecht: Kluwer.

[7] Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A longitudinal study of learning to use chil dren’s thinking in mathematics instruction. Journal for Research in Mathematics Education, 27, 403-434. doi:10.2307/749875

[8] Franke, M. L. (2003). Fostering young children’s mathematical under standing. In C. Howes (Ed.), Teaching 4 to 8-year-olds: Literacy, math, multiculturalism, and classroom community. Baltimore, MD: Brookes.

[9] Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

[10] Hershkovitz, S., Peled, I., & Littler, G. (2009). Mathematical creativity and giftedness in elementary school: Task and teacher promoting creativity for all. In R. Leikin, A. Berman, & B. Koichu (Eds.), Crea tivity in mathematics and the education of gifted students (pp. 255-269). Rotterdam: Sense Publishers.

[11] Hirsh, R. A. (2010). Creativity: Cultural capital in the mathematics class room. Creative Education, 1, 154-161. doi:10.4236/ce.2010.13024

[12] Leder, G. C. (1992). Mathematics before formal schooling. Educational Studies in Mathematics, 23, 383-396. doi:10.1007/BF00302441

[13] Leikin, R. (2009a). Bridging research and theory in mathematics educa tion with research and theory in creativity and giftedness. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 383-409). Rotterdam: Sense Publishers.

[14] Leikin, R. (2009b). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Rotterdam: Sense Publishers.

[15] Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference? ZDM—The International Journal on Mathematics Edu cation, 45, 183-197.

[16] Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of the art. ZDM Mathematics Education, 45, 159-166. doi:10.1007/s11858-012-0459-1

[17] Leikin, R., Berman, A., & Koichu, B. (2009). Creativity in mathematics and the education of gifted students. Rotterdam: Sense Publisher.

[18] Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solu tion tasks in developing knowledge and creativity in geometry. Jour nal of Mathematical Behavior, 31, 73-90.
doi:10.1016/j.jmathb.2011.11.001

[19] Milgram, R., & Hong, E. (2009). Talent loss in mathematics: Causes and solutions. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativ ity in mathematics and the education of gifted students (pp. 149-163). Rotterdam: Sense Publishers.

[20] Nesher, P., Greeno, J. G., & Riley, M. S. (1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics, 13, 373-394. doi:10.1007/BF00366618

[21] Riley, M. S., Greeno, J. G., & Heller, J. (1983). Development of chil dren’s problem-solving ability in arithmetic. The Development of Mathematical Thinking (pp. 153-196). New York: Academic Press.

[22] Sak, U., & Maker, C. J. (2006). Developmental variations in children’s creative mathematical thinking as a function of schooling, age, and knowledge. Creativity Research Journal, 18, 279-291.
doi:10.1207/s15326934crj1803_5

[23] Sfard, A., & Lavie, I. (2005). Why cannot children see as the same what grown-ups cannot see as different? Early numerical thinking revisited. Cognition and Instruction, 23, 237-309.
doi:10.1207/s1532690xci2302_3

[24] Sheffield, L. (2009). Developing mathematical creativity—Questions may be the answer. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 87-100). Rotterdam: Sense Publishers.

[25] Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM—The International Journal on Mathematics Education, 29, 75-80.
doi:10.1007/s11858-997-0003-x

[26] Steinberg, R. (1985a). Instruction on derived facts strategies in addition and subtraction. Journal for Research in Mathematics Education, 16, 337-355. doi:10.2307/749356

[27] Steinberg, R. (1985b). Keeping track processes in addition and sub traction. Paper Presented at the Annual Meeting of the American Educational Research Association, Chicago, IIlinois.

[28] Steinberg, R. M., Empson, S. B., & Carpenter, T. P. (2004). Inquiry into children’s mathematical thinking as a means to teacher change. Journal of Mathematics Teacher Education, 7, 237-267.
doi:10.1023/B:JMTE.0000033083.04005.d3

[29] Tabach, M., & Friedlander, A. (2013). School mathematics and creativity at the elementary and middle grades level: How are they related? ZDM—The International Journal on Mathematics Education, 45, 227-238.

[30] Tiedemann, K., & Brandt, B. (2010). Parents’ Support in Mathematical Discourses. In U. Gellert, E. Jablonka, & C. Morgan (Eds.). Proceedings of the 6th International Conference on Mathematics Education and Society (pp. 428-437). Berlin: Freie Universitat Berlin.

[31] Torrance, E. P. (1974). Torrance tests of creative thinking. Bensenville, IL: Scholastic Testing Service.

[32] Tsamir, P., Tirosh, D., Tabach, M., & Levenson, E. (2010). Multiple solution methods and multiple outcomes—Is it a task for kindergar ten children? Educational Studies in Mathematics, 73, 217-231.
doi:10.1007/s10649-009-9215-z

[33] Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

[34] Warfield, J., & Yttri, M. J. (1999). Cognitively Guided Instruction in one kindergarten classroom. In J. V. Copley (Ed.). Mathematics in the early years. Reston, VA: NCTM.

[35] Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumenta tion, and autonomy in mathematics. Journal for Research in Mathe matics Education, 458-477. doi:10.2307/749877