OJMetal  Vol.3 No.2 A , July 2013
Brassinosteroids and Plant Responses to Heavy Metal Stress. An Overview
ABSTRACT

Soil contamination with heavy metals has become a world-wide problem, leading to the loss in agricultural productivity. Plants have a remarkable ability to take up and accumulate heavy metals from their external environment and it is well known that high levels of heavy metals affect different physiological and metabolic processes. Brassinosteroids are considered as the sixth class of plant hormones and they are essential for plant growth and development. These compounds are able of inducing abiotic stress tolerance in plants. In this paper, information about brassinosteroids and plant responses to heavy metal stress is reviewed.


Cite this paper
M. Vázquez, Y. Guerrero, L. González and W. Noval, "Brassinosteroids and Plant Responses to Heavy Metal Stress. An Overview," Open Journal of Metal, Vol. 3 No. 2, 2013, pp. 34-41. doi: 10.4236/ojmetal.2013.32A1005.
References
[1]   D. E. Salt, M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. B. Ensley, I. Chet and I. Raskin, “Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environmental Using Plants,” Biotechnology, Vol. 13, 1995, pp. 468-474. doi:10.1038/nbt0595-468

[2]   S. Kevre?an, N. Petrovi?, M. Popovi? and M. Kandra?, “Effect of Heavy Metals on Nitrate and Protein Metabolism in Sugar Beet,” Biologia Plantarum, Vol. 41, No. 2, 1998, pp. 235-240. doi:10.1023/A:1001818714922

[3]   G. Bhakuni, B. K. Dube, P. Sinha and C. Chatterjee, “Copper Stress Affects Metabolism and Reproductive Yield of Chickpea,” Journal of Plant Nutrition, Vol. 32, No. 4, 2009, pp. 703-711. doi:10.1080/01904160902743258

[4]   A. Bajguz and S. Hayat, “Effects of Brassinosteroids on the Plant Responses to Environmental Stresses,” Plant Physiology and Biochemistry, Vol. 47, No. 1, 2009, pp. 1-8. doi:10.1016/j.plaphy.2008.10.002

[5]   M. Farooq, A. Wahid, N. Kobayashi, D. Fujita and S. M. A. Basra, “Plant Drought Stress: Effects, Mechanisms and Management,” Agronomy for Sustainable Development, Vol. 29, No. 1, 2009, pp. 185-212. doi:10.1051/agro:2008021

[6]   M. M. Posymk, M. Balabusta, M. Wieczorek, E. Sliwinska and K. M. Janas, “Melatonin Applied to Cucumber (Cucumis sativus L.) Seeds Improves Germination during Chilling Stress,” Journal of Pineal Research, Vol. 46, No. 2, 2009, pp. 214-223. doi:10.1111/j.1600-079X.2008.00652.x

[7]   C. O. Dimpka, A. Svatos, P. Dabrowska, A. Schmidt, W. Boland and E. Kothe, “Involvement of Siderophores in the Reduction of Metal-Induced Inhibition of Auxin Synthesis in Streptomyces spp.,” Chemosphere, Vol. 74, No. 1, 2008, pp. 19-25. doi:10.1016/j.chemosphere.2008.09.079

[8]   T. Kellos, I. Timar, V. Szilagyi, G. Szalai, G. Galiba and G. Kocsy, “Stress Hormones and Abiotic Stresses Have Different Effects of Antioxidants in Maize Lines with Different Sensitivity,” Plant Biology, Vol. 10, No. 5, 2008, pp. 563-572. doi:10.1111/j.1438-8677.2008.00071.x

[9]   B. Usha, G. Venkataraman and A. Parida, “Heavy Metal and Abiotic Stress Inducible Metallothionein Isoforms from Prosopis juliflora (SW) D.C. Show Differences in Binding to Heavy Metals in Vitro,” Molecular Genetics and Genomics, Vol. 281, No. 1, 2009, pp. 99-108. doi:10.1007/s00438-008-0398-2

[10]   R. Bhardwaj, N. Arora and P. Sharma and H. K. Arora, “Effects of 28-Homobrassinolide on Seedling Growth, Lipid Peroxidation and Antioxidative Enzyme Activities under Nickel Stress in Seedlings of Zea mays L.,” Asian Journal of Plant Sciences, Vol. 6, No. 5, 2007, pp. 765-772. doi:10.3923/ajps.2007.765.772

[11]   S. Anuradha and S. S. R. Rao, “Effect of 24-Epibrassinolide on the Photosynthetic Activity of Radish Plants under Cadmium Stress,” Photosynthetica, Vol. 47, No. 2, 2009, pp. 317-320. doi:10.1007/s11099-009-0050-3

[12]   P. Sharma and R. Bhardwaj, “Effects of 24-Epibrassinolide on Growth and Metal Uptake in Brassica juncea L. under Copper Metal Stress,” Acta Physiologiae Plantarum, Vol. 29, No. 3, 2007, pp. 259-263. doi:10.1007/s11738-007-0032-7

[13]   V. A. Khripach, V. N. Zhabinskii and A. E. de Groot, “Brassinosteroids. A New Class of Plant Hormones,” Academic Press, San Diego, 1999.

[14]   A. Bajguz, “Brassinosteroids and Lead as Stimulators of Phytochelatins Synthesis in Chlorella vulgaris,” Journal of Plant Physiology, Vol. 159, No. 3, 2002, pp. 321-324. doi:10.1078/0176-1617-00654

[15]   S. P. Choudhary, R. Bhardwaj, B. D. Gupta, P. Dutt, R. K. Gupta, S. Biondi and M. Kanwar, “Epibrassinolide Induces Changes in Indole-3-Acetic Acid, Abscisic Acid and Polyamine Concentrations and Enhances Antioxidant Potential of Radish Seedlings under Copper Stress,” Plant Physiology, Vol. 140, 2010, pp. 280-296.

[16]   S. A. Hasan, S. Hayat, B. Ali and A. Ahmad, “28-Homobrassinolide Protects Chickpea (Cicer arietinum) from Cadmium Toxicity by Stimulating Antioxidants,” Environmental Pollution, Vol. 151, No. 1, 2008, pp. 60-66. doi:10.1016/j.envpol.2007.03.006

[17]   M. M. Rady, “Effect of 24-Epibrassinolide on Growth, Yield, Antioxidant System and Cadmium Content of Bean (Phaseolus vulgaris L.) Plants under Salinity and Cadmium Stress,” Scientia Horticulturae, Vol. 129, No. 2, 2011, pp. 232-237. doi:10.1016/j.scienta.2011.03.035

[18]   M. Yusuf, Q. Fariduddin and A. Ahmad, “24-Epibrassinolide Modulates Growth, Nodulation, Antioxidant System and Osmolyte in Tolerant and Sensitive Varieties of Vigna radiata under Different Levels of Nickel: A Shotgun Approach,” Plant Physiology and Biochemistry. Vol. 57, 2012, pp. 143-153. doi:10.1016/j.plaphy.2012.05.004

[19]   K. Mengel and E. A. Kirkby, “Principles of Plant Nutrition,” 4th Edition, International Potash Institute, Basel, 1987.

[20]   J. A. Raven, M. C. W. Evans and R. E. Korb, “The Role of Trace Metals in Photosynthetic Electron Transport in O2-Evolving Organisms,” Photosynthesis Research, Vol. 60, No. 2-3, 1999, pp. 111-150. doi:10.1023/A:1006282714942

[21]   L. M. Chen, C. C. Lin and C. H. Kao, “Copper Toxicity in Rice Seedlings: Changes in Antioxidative Enzyme Activities, H2O2 Level and Cell Wall Peroxidase Activity in Roots,” Botanical Bulletin of Academy Sinica, Vol. 41, 2000, pp. 99-103.

[22]   B. Halliwell, J. M. C Gutteridge and O. I. Aruoma, “The Deoxyribose Method: A Simple ‘Test Tube’ Assay for Determination of Rate Constants for Reactions of Hydroxyl Radical,” Analytical Biochemistry, Vol. 165, No. 1, 1987, pp. 215-219. doi:10.1016/0003-2697(87)90222-3

[23]   C. M. Luna, C. A. González and V. S. Trippi, “Oxidative Damage Caused by an Excess of Copper in Oat Leaves,” Plant and Cell Physiology, Vol. 35, 1994, pp. 11-15.

[24]   E. Lovaas, “Antioxidant and metal-chelating effects of polyamines”. In: Sies H (ed) Advances in Pharmacology, Vol. 38, Antioxidants in Disease Mechanisms and Therapy. Academic Press, pp. 119–149, 1997.

[25]   A. Schutzendubel and A. Polle, “Plant Responses to Abiotic Stresses: Heavy Metal-Induced Oxidative Stress and Protection by Mycorrhization,” Journal of Experimental Botany, Vol. 53, No. 372, 2002, pp. 1351-1365. doi:10.1093/jexbot/53.372.1351

[26]   A. M. Michaud, C. Chappellaz and P. Hinsinger, “Copper Phytotoxicity Affects Root Elongation and Iron Nutrition in Durum Wheat (Triticum turgidum Durum L.),” Plant and Soil, Vol. 310, No. 1-2, 2007, pp. 151-165. doi:10.1007/s11104-008-9642-0

[27]   S. P. Choudhary, R. Bhardwaj, B. D.Gupta, P. Dutt, R. K. Gupta, M. Kanwar and S. Biondi, “Enhancing Effects of 24-Epibrassinolide and Putrescine on the Antioxidant Capacity and Free Radical Scavenging Activity of Raphanus sativus Seedlings under Cu Ion Stress,” Acta Physiologiae Plantarum, Vol. 33, No. 4, 2011, pp. 1319-1333. doi:10.1007/s11738-010-0665-9

[28]   M. K. Kanwar, R. Bhardwaj, S. P. Chowdhary, P. Arora, P. Sharma and S. Kumar, “Isolation and Characterization of 24-Epibrassinolide from Brassica juncea L. and Its Effects on Growth, Ni Ion Uptake, Antioxidant Defense of Brassica Plants and in Vitro Cytotoxicity,” Acta Physiologiae Plantarum, Vol. 35, No. 4, 2013, pp. 1351-1362. doi:10.1007/s11738-012-1175-8

[29]   W. Bal and K. S. Kasprzak, “Induction of Oxidative Damage by Carcinogenic Metal,” Toxicology Letters, Vol. 127, No. 1-3, 2002, pp. 55-62. doi:10.1016/S0378-4274(01)00483-0

[30]   A. K. Stobart, W. Griffits, L. Bukhari and A. Sherwood, “The Effect of Cd2+ on the Biosynthesis of Chlorophyll in Leaves of Barley,” Physiologia Plantarum, Vol. 63, No. 3, 1985, pp. 293-298. doi:10.1111/j.1399-3054.1985.tb04268.x

[31]   H. Kupper, F. Kupper and M. Spiller, “In Situ Detection of Metal Substituted Chlorophylls in Water Plants,” Photosynthesis Research, Vol. 58, No. 2, 1998, pp. 123-133. doi:10.1023/A:1006132608181

[32]   N. V. Shalygo, N. V. Kolensikova, V. V. Voronetskaya and N. G. Averina, “Effects of Mn2+, Fe2+, Co2+ and Ni2+ on Chlorophyll Accumulation and Early Stages of Chlorophyll Formation of Greening Barley Seedling,” Russian Journal of Plant Physiology, Vol. 46, 1999, pp. 496-501.

[33]   R. Abdel-Basset, A. A. Issa and M. S. Adam, “Chlorophyllase Activity: Effects of Heavy Metal and Calcium,” Photosynthetica, Vol. 31, 1995, pp. 421-425.

[34]   I. S. Sheoran, H. R. Signal and R. Singh, “Effect of Cadmium and Nickel on Photosynthesis and the Enzymes of the Photosynthetic Carbon Reduction Cycle in Pigeon Pea (Cajanus cajan L.),” Photosynthesis Research, Vol. 23, No. 3, 1990, pp. 345-351. doi:10.1007/BF00034865

[35]   M. M. Alam, S. Hayat, B. Ali and A. Ahmad, “Effect of 28-Homobrassinolide Treatment on Nickel Toxicity in Brassica juncea,” Photosynthetica, Vol. 45, No. 1, 2007, pp. 139-142. doi:10.1007/s11099-007-0022-4

[36]   B. Ali, S. Hayat, Q. Fariduddin and A. Ahmad, “24-Epibrassinolide Protects against the Stress Generated by Salinity and Nickel in Brassica juncea,” Chemosphere, Vol. 72, No. 9, 2008, pp. 1387-1392. doi:10.1016/j.chemosphere.2008.04.012

[37]   P. Sharma, R. Bhardwaj, N. Arora, H. K. Arora and A. Kumar, “Effects of 28-Homobrassinolide on Nickel Uptake, Protein Content and Antioxidative Defence System in Brassica juncea,” Biologia Plantarum, Vol. 52, No. 4, 2008, pp. 767-770. doi:10.1007/s10535-008-0149-6

[38]   S. Hayat, M. N. Alyemeni and S. A. Hasan, “Foliar Spray of Brassinosteroid Enhances Yield and Quality of Solanum lycopersicum under Cadmium Stress,” Saudi Journal of Biological Sciences, Vol. 19, No. 3, 2012, pp. 325-335.

[39]   A. P. Pinto, A. M. Mota, A. de Varennes and F. C. Pinto, “Influence of Organic Matter on the Uptake of Cadmium, Zinc, Copper and Iron by Sorghum Plants,” Science of the Total Environment, Vol. 326, No. 1-3, 2004, pp. 239-247. doi:10.1016/j.scitotenv.2004.01.004

[40]   P. K. Singh and R. K. Tewari, “Cadmium Toxicity Induced Changes in Plant Water Relations and Oxidative Metabolism of Brassica juncea L. Plants,” Journal of Environmental Biology, Vol. 24, No. 1, 2003, pp. 107-112.

[41]   J. Barcelo and C. Poschenrieder, “Fast Root Growth Responses, Root Exudates and Internal Detoxification as Clues to the Mechanisms of Aluminium Toxicity and Resistance: A Review,” Environmental and Experimental Botany, Vol. 48, No. 1, 2002, pp. 75-92. doi:10.1016/S0098-8472(02)00013-8

[42]   A. Siedlecka, Z. Krupa, G. Samuelsson, G. ?quist and K. Gardestr?m, “Primary Carbon Metabolism in Phaseolus vulgaris Plants under Cd/Fe Interaction,” Plant Physiology and Biochemistry, Vol. 35, No. 12, 1997, pp. 951-957.

[43]   C. Poschenrieder, B. Gunse and J. Barcelo, “Influence of Cadmium on Water Relations, Stomatal Resistance, and Abscissic Acid Content in Expenditure Bean Leaves,” Journal of Experimental Botany, Vol. 90, No. 4, 1989, pp. 1365-1371. doi:10.1104/pp.90.4.1365

[44]   L. K. Chugh and S. K. Sawhney, “Photosynthetic Activities of Pisum sativum Seedling Grown in Presence of Cadmium,” Plant Physiology and Biochemistry, Vol. 37, No. 4, 1999, pp. 297-303. doi:10.1016/S0981-9428(99)80028-X

[45]   H. Obata, N. Inoue and M. Umebayashi, “Effect of Cd on Plasma Membrane ATPase from Plant Roots Differing in Tolerance to Cadmium,” Soil Science & Plant Nutrition, Vol. 42, No. 2, 1996, pp. 361-366.

[46]   A. Janeczko, J. Ko?cielniak, M. Pilipowicz and S. Lukaszewska, “Protection of Winter Rape Photosystem 2 by 24-Epibrassinolide under Cadmium Stress,” Photosynthetica, Vol. 43, No. 2, 2005, pp. 293-298. doi:10.1007/s11099-005-0048-4

[47]   S. Hayat, B. Ali, S. A. Hasan and A. Ahmad, “Brassinosteroid Enhanced the Level of Antioxidants under Cadmium Stress in Brassica juncea,” Environmental and Experimental Botany, Vol. 60, No. 1, 2007, pp. 33-41. doi:10.1016/j.envexpbot.2006.06.002

[48]   S. Hayat, S. A. Hasan, Q. Hayat and A. Ahmad, “Brassinosteroids Protect Lycopersicon esculentum from Cadmium Toxicity Applied as Shotgun Approach,” Protoplasma, Vol. 239, No. 1-4, 2010, pp. 3-14. doi:10.1007/s00709-009-0075-2

[49]   A. Gayor, P. S. Srivastava and M. Iqbal, “Morphogenic and Biochemical Responses of Bacopa monniera Cultures to Zinc Toxicity,” Plant Science, Vol. 143, No. 2, 1999, pp. 187-193. doi:10.1016/S0168-9452(99)00032-1

[50]   N. Vaillant, F. Monnet, A. Hitmi, H. Sallanon and A. Coudret, “Comparative Study of Responses in Four Datura Species to Zinc Stress,” Chemosphere, Vol. 59, No. 7, 2005, pp. 1005-1013. doi:10.1016/j.chemosphere.2004.11.030

[51]   S. Castiglione, C. Franchin, T. Fossat, G. Lingua, P. Torrigiani and S. Biondi, “High Zinc Concentrations Reduce Rooting Capacity and Alter Metallothionein Gene Expression in White Poplar (Populus alba L. cv. Villafranca),” Chemosphere, Vol. 67, No. 6, 2007, pp. 1117- 1126. doi:10.1016/j.chemosphere.2006.11.039

[52]   R. K. Tewari, P. Kumar and P. N. Sharma, “Morphology and Physiology of Zinc-Stressed Mulberry Plants,” Journal of Plant Nutrition and Soil Science, Vol. 171, 2008, pp. 286-294.

[53]   C. C. P. De Magalhaes, D. Cardoso, C. P. D Santos and R. M. Chaloub, “Physiological and Photosynthetic Responses of Synechocystis aquatilis f. Aquatilis (Cyanophyceae) to Elevated Levels of Zinc,” Phycology, Vol. 40, No. 3, 2004, pp. 496-504. doi:10.1111/j.1529-8817.2004.03094.x

[54]   C. Wang, S. H. Zhang, P. F. Wang, J. Qian, J. Hou, W. J. Zhang and J. Lu, “Excess Zn Alters the Nutrient Uptake and Induces the Antioxidative Responses in Submerged Plant Hydrilla verticillata (L.f.) Royle,” Chemosphere, Vol. 76, No. 7, 2009, pp. 938-945. doi:10.1016/j.chemosphere.2009.04.038

[55]   B. Ramakrishna and S. S. R. Rao, “24-Epibrassinolide Alleviated Zinc-Induced Oxidative Stress in Radish (Raphanus sativus L.) Seedlings by Enhancing Antioxidative System,” Plant Growth Regulation, Vol. 68, No. 2, 2012, pp. 249-259. doi:10.1007/s10725-012-9713-3

[56]   P. Arora, R. Bhardwaj and M. K. Kanwar, “24-Epibrassinolide Induced Antioxidative Defense System of Brassica juncea L. under Zinc Metal Stress,” Physiology and Molecular Biology of Plants, Vol. 16, No. 3, 2010, pp. 285-293. doi:10.1007/s12298-010-0031-9

[57]   A. Bajguz, “Blockade of Heavy Metals Accumulation in Chlorella vulgaris Cells by 24-Epibrassinolide,” Plant Physiology and Biochemistry, Vol. 38, No. 10, 2000, pp. 797-801. doi:10.1016/S0981-9428(00)01185-2

[58]   V. A. Vitorello, F. R. Capald and V. A. Stefanuto, “Recent Advances in Aluminium Toxicity and Resistance in Higher Plants,” Brazilian Journal of Plant Physiology, Vol. 17, No. 1, 2005, pp. 129-143. doi:10.1590/S1677-04202005000100011

[59]   C. Exley, “The Pro-Oxidant Activity of Aluminium,” Free Radical Biology and Medicine, Vol. 36, No. 3, 2004, pp. 380-387. doi:10.1016/j.freeradbiomed.2003.11.017

[60]   M. A. Akeson, D. N. Munns and R. G. Burau, “Adsorption of Al3+ to Phosphotidylcholine Vesicles,” Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 986, No. 1, 1989, pp. 33-40. doi:10.1016/0005-2736(89)90269-1

[61]   M. Detters, J. P. Servais and E. Wulfert, “Neurotoxic Cations Induce Membrane Rigidifications and Membrane Fusion at Micromolar Concentrations,” Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 855, No. 2, 1986, pp. 271-276. doi:10.1016/0005-2736(86)90174-4

[62]   H. Matsumoto, Y. Senoo, M. Kasai and M. Maeshima, “Response of Plant Root to Aluminum Stress: Analysis of the Inhibition of the Root Elongation and Changes in Membrane Function,” Journal of Plant Research, Vol. 109, No. 1, 1996, pp. 99-105. doi:10.1007/BF02344294

[63]   M. Ciamporova, “Morphological and Structural Responses of Plant Roots to Aluminium at Organs, Tissue and Cellular Levels,” Biologia Plantarum, Vol. 45, No. 2, 2002, pp. 161-171. doi:10.1023/A:1015159601881

[64]   B. A. Abdullahi, X. Gu, Q. Gan and Y. Yang, “Brassinolide Amelioration of Aluminium Toxicity in Mung Bean Seedling Growth,” Journal of Plant Nutrition, Vol. 26, No. 9, 2003, pp. 1725-1734. doi:10.1081/PLN-120023278

[65]   K. B. Balestrasse, S. M. Gallego and M. L. Tomaro, “Aluminium Stress Affects Nitrogen Fixation and Assimilation in Soybean (Glycine max L.),” Plant Growth Regulation, Vol. 48, No. 3, 2006, pp. 271-281.

[66]   B. Ali, S. A. Hasan, S. Hayat, Q. Hayat, S. Yadav, Q. Fariduddin and A. Ahmad, “A Role for Brassinosteroids in the Amelioration of Aluminium Stress through Antioxidant System in Mung Bean (Vigna radiata L. Wilc- zek),” Environmental and Experimental Botany, Vol. 62, No. 2, 2008, pp. 153-159. doi:10.1016/j.envexpbot.2007.07.014

[67]   A. K. Shanker, T. C. Cervantes, H. Loza-Taverac and S. Avudainayagam, “Chromium Toxicity in Plants,” Environment International, Vol. 31, No. 5, 2005, pp. 739-753. doi:10.1016/j.envint.2005.02.003

[68]   S. P. Choudhary, M. Kanwar, R. Bhardwaj, B. D. Gupta and R. K. Gupta, “Epibrassinolide Ameliorates Cr (VI) Stress via Influencing the Levels of Indole-3-Acetic Acid, Abscisic Acid, Polyamines and Antioxidant System of Radish Seedlings,” Chemosphere, Vol. 84, No. 5, 2011, pp. 592-600. doi:10.1016/j.chemosphere.2011.03.056

[69]   P. Arora, R. Bhardwaj and M. K. Kanwar, “24-Epi- brassinolide Regulated Diminution of Cr Metal Toxicity in Brassica juncea L. Plants,” Brazilian Journal of Plant Physiology, Vol. 22, No. 3, 2010, pp. 159-165. doi:10.1590/S1677-04202010000300002

[70]   H. Wang, T. Feng, X. Peng, M. Yan, P. Zhou and X. Tang, “Ameliorative Effects of Bassinosteroid on Excess Manganese Induced Oxidative Stress in Zea mays L. Leaves,” Agricultural Sciences in China, Vol. 8, No. 9, 2009, pp. 1063-1074. doi:10.1016/S1671-2927(08)60314-4

[71]   H. Sze, X. Li and M. G. Palmgren, “Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis,” Plant Cell, Vol. 11, No. 4, 1999, pp. 677-689.

[72]   K. Kasamo, “Regulation of Plasma Membrane H+-AT-Pase Activity by the Membrane Environment,” Journal of Plant Research, Vol. 116, No. 6, 2003, pp. 517-523. doi:10.1007/s10265-003-0112-8

[73]   T. E. Sondergaard, A. Schulz and M. G. Palmgren, “Energization of Transport Processes in Plants. Roles of the Plasma Membrane H+-ATPase,” Plant Physiology, Vol. 136, No. 1, 2004, pp. 2475-2482. doi:10.1104/pp.104.048231

[74]   Z. Zhang, J. Ramirez, D. Reboutier, M. Brault, J. Trouverie, A. M. Pennarun, Z. Amiar, B. Biligui, L. Galagovsky and J. P. Rona, “Brassinosteroids Regulate Plasma Membrane Anion Channels in Addition to Proton-Pumps during Expansion of Arabidopsis thaliana Cells,” Plant and Cell Physiology, Vol. 46, No. 9, 2005, pp. 1494-1504. doi:10.1093/pcp/pci162

[75]   R. Mittler, “Oxidative Stress, Antioxidants and Stress Tolerance,” Trends in Plant Science, Vol. 7, No. 9, 2002, pp. 405-410. doi:10.1016/S1360-1385(02)02312-9

[76]   K. Apel and H. Hirt, “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annual Review of Plant Biology, Vol. 55, 2004, pp. 373-399. doi:10.1146/annurev.arplant.55.031903.141701

[77]   C. M. Andre, L. Yvan and E. Daniele, “Dietary Antioxidants and Oxidative Stress from a Human and Plant Perspective: A Review,” Current Nutrition & Food Science, Vol. 6, No. 1, 2010, pp. 2-12. doi:10.2174/157340110790909563

[78]   S. Q. Cao, Q. T. Xu, Y. J. Cao, K. Qian, K. An, Y. Zhu, B. Z. Hu, H. F. Zhao and B. Kuai, “Loss of Function Muta- tions in DET2 Gene Lead to an Enhanced Resistance to Oxidative Stress in Arabidopsis,” Physiologia Plantarum, Vol. 123, No. 1, 2005, pp. 57-66. doi:10.1111/j.1399-3054.2004.00432.x

[79]   X. J. Xia, Y. J. Wang, Y. H. Zhou, Y. Tao, W. H. Mao, K. Shi, T. Asami, Z. X. Chen and J. Q. Yu, “Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber,” Plant Physiology, Vol. 150, No. 2, 2009, pp. 801-814. doi:10.1104/pp.109.138230

[80]   M. Behnamnia, K. M. Kalantari and J. Ziaie, “The Effects of Brassinosteroid on the Induction of Biochemical Changes in Lycopersicon esculentum under Drought Stress,” Turkish Journal of Botany, Vol. 33, No. 6, 2009, pp. 417-428.

[81]   B. Ali, S. Hayat and A. Ahmad, “28-Homobrassinolide Ameliorates the Saline. Stress in Chickpea (Cicer arietinum L.),” Environmental and Experimental Botany, Vol. 59, No. 2, 2007, pp. 217-223. doi:10.1016/j.envexpbot.2005.12.002

[82]   L. M. Mazorra, “Los Brasino?esteroides y su Relación Con la Tolerancia de Plántulas de Tomate (Solanum Iycopersicum L.) Ante el Choque por Temperatura Alta,” Ph.D. Thesis, University of Havana, Havana, 2008.

[83]   Y. Liu, H. Jiang, Z. Zhao and L. An, “Abscisic Acid Is Involved in Brassinosteroids-Induced Chilling Tolerance in the Suspension Cultured Cells from Chorispora bungeana,” Journal of Plant Physiology, Vol. 168, No. 9, 2011, pp. 853-862. doi:10.1016/j.jplph.2010.09.020

[84]   S. P. Choudhary, J.-Q. Yu, K. Yamaguchi-Shinozaki, K. Shinozaki and L.-S. Tran, “Benefits of Brassinosteroid Crosstalk,” Trends in Plant Science, Vol. 17, No. 10, 2012, pp. 594-605. doi:10.1016/j.tplants.2012.05.012

 
 
Top