[1] G. Bertone, D. Hooper and J. Silk, “Particle Dark Matter: Evidence, Candidates and Constraintes,” Physics Reports, Vol. 405, No. 5-6, 2005, pp. 279-390.
[2] D. N. Spergel et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” The Astrophysical Journal Supplement Series, Vol. 148, No. 1, 2003, pp. 175-194.
[3] M. Tegmark et al., “Cosmological Parameters from SDSS and WMAP,” Physical Review D, Vol. 69, No. 10, 2004.
[4] G. F. Lewis, R. A. Ibata and J. S. B. Wyithe, “Searching for MACHOs in Galaxy Clusters,” The Astrophysical Journal, Vol. 542, No. 1, 2000, pp. L9-L12.
[5] J. E. Kim, “Light Pseudoscalars, Particle Physics and Cosmology,” Physics Reports, Vol. 150, No. 1-2, 1987, pp. 1-177.
[6] S. Raby, “Gauge-mediated SUSY Breaking with a Gluino LSP,” Physics Letters B, Vol. 422, No. 1-4, 1998, pp. 158-162.
[7] H. Baer, K. Cheung and J. F Gunion, “A Heavy Gluino as the Lightest Supersymmetric Particle,” Physical Review D, Vol. 59, No. 7, 1999.
[8] C. L. Chou, H. L. Lai and C. P. Yuan, “New Production Mechanism of Neutral Higgs Bosons with Right Scalar Tau Neutrino as the LSP,” Physics Letters B, Vol. 489, No. 1-2, 2000, pp. 163-170.
[9] A. D. Gouvea, S. Gopalakrishna and W. Porod, “Stop Decay into Right-handed Sneutrino LSP at Hadron Colliders,” JHEP0611: 050, 2006.
[10] P. Janot, “The Light Gluino Mass Window Revisited,” Physics Letters B, Vol. 564, No. 3-4, 2003, pp. 183-189.
[11] T. Hebbeker, “Can the Sneutrino be the Lightest Supersymmetric Particle,” Physics Letters B, Vol. 470, No. 1-4, 1999, pp. 259-262.
[12] G. Steigman and M. S. Turner, “Cosmological Constraints on the Properties of Weakly Interacting Massive Particles,” Nuclear Physics B, Vol. 253, No. 2, 1985, pp. 375-386.
[13] L. Iorio. “Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System,” Astronomische Nachrichten, Vol. 330, No. 8, 2009, pp. 857-862.
[14] X. Hernandez, S. Mendoza, T. Suarez and T. Bernal, “Understanding Local Dwarf Spheroidals and Their Scaling Relations under MOND,” arXiv: 0904.1434.
[15] L. Bergstrom, “Non-Baryonic Dark Matter : Observa- tional Evidence and Detection Methods,” Reports on Progress in Physics, Vol. 63, No. 5, 2000, pp. 793-841.
[16] C. Munoz, “Dark Matter Detection in the Light of Recent Experimental Results,” International Journal of Modern Physics A, Vol. 19, No. 19, 2004, 3093-3169.
[17] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones and D. Zaritsky, “A Direct Empirical Proof of the Existence of Dark Matter,” Astrophysical Journal Letters, Vol. 648, 2006, pp. 109-113.
[18] Haber and G.L. Kane, “The Search for Supersymmetry: Probing Physics Beyond the Standard Model,” Physics Reports, Vol. 117, No. 2-4, 1985, pp. 75-263.
[19] R. W. Schnee, “Status of Direct Searches for WIMP Dark Matter,” AIP Conference Proceedings, Vol. 903, 2007, pp: 8-15.
[20] S. P. Martin, “Implications of Supersymmetric Models with Natural R-parity Conservation,” Physical Review D, Vol. 54, 1996, pp: 2340-2348.
[21] S. Perlmutter et al., “Measurements of Omega and Lambda from 42 High-Redshift Supernovae,” The Astrophysical Journal, Vol. 517, No. 2, 1999, pp: 565-586.
[22] H. Goldberg, “Constraint on the Photino Mass from Cosmology,” Physical Review Letters, Vol. 50, 1983, pp: 1419-1422.
[23] G.R. Farrar and P. Fayet, “Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry,” Physics Letters B, Vol. 76, No. 5, 1978, pp. 575-579.
[24] D. Méra, G. Chabrier and R. Schaeffer, “Towards a Consistent Model of the Galaxy: II. Derivation of the Model,” astro-ph/9801050, 1998.
[25] R. J. Gaitskell, “Direct detection of Dark Matter,” Annual Review of Nuclear and Particle Science, Vol. 54, 2004, pp: 315-359.
[26] Z. Ahmed, et al., “Results from the Final Exposure of the CDMS II Experiment,” The CDMS Collaboration, 2009.
[27] Z. Ahmed, et al., “Search for Weakly Interacting Massive Particles with the First Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory,” Physical Review Letters, Vol. 102, No. 1, 2009.
[28] E. Armengaud et al., “First Results of the EDELWEISS-II WIMP Search Using Ge Cryogenic Detectors with Interleaved Electrodes,” Physics Letters B, Vol. 687, No. 4-5, 2010, pp: 294-298.
[29] E. Aprile et al., “New Measurment of the Relative Scintillation Efficiency of Xenon Nuclear Recoils Below 10 keV,” Physical Review C, Vol. 79, No. 4, 2009.
[30] V. N. Lebedenko et al., “Results from the First Science Run of the Zeplin-III Dark Matter Search Experiment,” Physical Review D, Vol. 80, No. 5, 2009.
[31] J. L. Feng, A. Rajaraman and F. Takayama, “Superweakly Interacting Massive Particles,” Physical Review Letters, Vol. 68, No. 6, 2003.
[32] J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, “Gravitino Dark Matter in the CMSSM,” Physics Letters B, Vol. 588, 2004, pp: 7-16.
[33] J. L. Feng, S. F. Su and F. Takayama, “SuperWIMP Gravitino Dark Matter from Slepton and Sneutrino Decays,” Physical Review D, Vol. 70, No. 6, 2004.