[1] H. Seppa and K. D. Bennett, “Quaternary Pollen Analysis: Recent Progress in Palaeoecology and Palaeoclimatology,” Progress in Physical Geography, Vol. 27, No. 4, 2003, pp. 548-579. doi:10.1191/0309133303pp394oa
[2] S. Sugita, “Pollen Representation of Vegetation in Quaternary Sediments: Theory and Method in Patchy Vegetation,” Journal of Ecology, Vol. 82, No. 4, 1994, pp. 881-897. doi:10.2307/2261452
[3] A. Brostrom, et al., “Pollen Productivity Estimates of Key European Plant Taxa for Quantitative Reconstruction of Past Vegetation: A Review,” Vegetation History and Archaeobotany, Vol. 17, No. 5, 2008, pp. 461-478. doi:10.1007/s00334-008-0148-8
[4] S. Sugita, et al., “Testing the Landscape Reconstruction Algorithm for Spatially Explicit Reconstruction of Vegetation in Northern Michigan and Wisconsin,” Quaternary Research, Vol. 74, No. 2, 2010, pp. 289-300. doi:10.1016/j.yqres.2010.07.008
[5] V. Zernitskaya and N. Mikhailov, “Evidence of Early Farming in the Holocene Pollen Spectra of Belarus,” Quarternary International, Vol. 203, No. 1-2, 2009, pp. 91-104. doi:10.1016/j.quaint.2008.04.014
[6] J. Whitmore, et al., “Modern Pollen Data from North American and Greenland for Multi-Scale Paleoenvironmental Applications,” Quaternary Science Reviews, Vol. 24, No. 16-17, 2005, pp. 1828-1848. doi:10.1016/j.quascirev.2005.03.005
[7] Y. Li, et al., “A Transfer-Function Model Developed from an Extensive Surface-Pollen Data Set in Northern China and Its Potential for Paleoclimate Reconstructions,” The Holocene, Vol. 17, No. 7, 2007, pp. 897-905. doi:10.1177/0959683607082404
[8] S. T. Jackson and J. W. Williams, “Modern Analogs in Quaternary Paleoecology: Here Today, Gone Yesterday, Gone Tomorrow?” Annual Review of Earth and Planetary Sciences, Vol. 32, 2004, pp. 495-537. doi:10.1146/annurev.earth.32.101802.120435
[9] A. Michels, et al., “Multidecadal to Millennial-Scale Shifts in Drought Conditions on the Canadian Prairies over the Past Six Millennia: Implications for Future Drought Assessment,” Global Change Biology, Vol. 13, No. 7, 2007, pp. 1295-1307. doi:10.1111/j.1365-2486.2007.01367.x
[10] J. W. Williams, et al., “Rapid, Time-Transgressive, and Variable Responses to Early Holocene Midcontinental Drying in North America,” Geology, Vol. 38, No. 2, 2010, pp. 135-138. doi:10.1130/G30413.1
[11] E. A. C. Rushton, S. E. Metcalfe and B. S. Whitney, “A Late-Holocene Vegetation History from the Maya Lowlands, Lamanai, Northern Belize,” Holocene, Vol. 23, No. 4, 2013, pp. 485-493. doi:10.1177/0959683612465449
[12] S. Sugita, “Theory of Quantitative Reconstruction of Vegetation I: Pollen from Large Sites Reveals Regional Vegetation Composition,” Holocene, Vol. 17, No. 2, 2007, pp. 229-241. doi:10.1177/0959683607075837
[13] S. Sugita, “Theory of Quantitative Reconstruction of Vegetation II: All You Need Is Love,” Holocene, Vol. 17, No. 2, 2007, pp. 243-257. doi:10.1177/0959683607075838
[14] S. Sugita, T. Parshall and R. Calcote, “Detecting Differences in Vegetation among Paired Sites Using Pollen Records,” Holocene, Vol. 16, No, 8, 2006, pp. 1123-1135. doi:10.1177/0959683606069406
[15] A. Brostrom, S. Sugita and M. J. Gaillard, “Pollen Productivity Estimates for the Reconstruction of Past Vegetation Cover in the Cultural Landscape of Southern Sweden,” Holocene, Vol. 14, No. 3, 2004, pp. 368-381. doi:10.1191/0959683604hl713rp
[16] A. B. Nielsen and S. Sugita, “Estimating Relevant Source Area of Pollen for Small Danish Lakes around AD 1800,” Holocene, Vol. 15, No. 7, 2005, pp. 1006-1020. doi:10.1191/0959683605hl874ra
[17] W. Soepboer, et al., “Pollen Productivity Estimates for Quantitative Reconstruction of Vegetation Cover on the Swiss Plateau,” Holocene, Vol. 17, No. 1, 2007, pp. 65-77. doi:10.1177/0959683607073279
[18] S. Sugita, S. Hicks and H. Sormunen, “Absolute Pollen Productivity and Pollen-Vegetation Relationships in Northern Finland,” Journal of Quaternary Science, Vol. 25, No. 5, 2010, pp. 724-736. doi:10.1002/jqs.1349
[19] A. Poska, et al., “Relative Pollen Productivity Estimates of Major Anemophilous Taxa and Relevant Source Area of Pollen in a Cultural Landscape of the Hemi-Boreal Forest Zone (Estonia),” Review of Palaeobotany and Palynology, Vol. 167, No. 1-2, 2011, pp. 30-39. doi:10.1016/j.revpalbo.2011.07.001
[20] K. L. Hjelle and S. Sugita, “Estimating Pollen Productivity and Relevant Source Area of Pollen Using Lake Sediments in Norway: How Does Lake Size Variation Affect the Estimates?” Holocene, Vol. 22, No. 3, 2012, pp. 313-324. doi:10.1177/0959683611423690
[21] C. L. Twiddle, et al., “Pollen Productivity Estimates for a Pine Woodland in Eastern Scotland: The Influence of Sampling Design and Vegetation Patterning,” Review of Palaeobotany and Palynology, Vol. 174, 2012, pp. 67-78. doi:10.1016/j.revpalbo.2011.12.006
[22] M. J. Bunting, et al., “Estimates of ‘Relative Pollen Productivity’ and ‘Relevant Source Area of Pollen’ for Major Tree Taxa in Two Norfolk (UK) Woodlands,” Holocene, Vol. 15, No. 3, 2000, pp. 459-465. doi:10.1191/0959683605hl821rr
[23] F. B. Samson, F. L. Knopf and W. R. Ostlie, “Great Plains Ecosystems: Past, Present, and Future,” Wildlife Society Bulletin, Vol. 32, No. 1, 2004, pp. 6-15. doi:10.2193/0091-7648(2004)32[6:GPEPPA]2.0.CO;2
[24] J. M. Briggs, et al., “An Ecosystem in Transition. Causes and Consequences of the Conversion of Mesic Grassland to Shrubland,” Bioscience, Vol. 55, No. 3, 2005, pp. 243-254. doi:10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2
[25] K. Faegri, P. E. Kaland and K. Kzywinski, “Textbook of Pollen Analysis,” 4th Edition, John Wiley, Hoboken, 1989, p. 328.
[26] K. K. McLauchlan, J. L. Commerford and C. J. Morris, “Tallgrass Prairie Pollen Assemblages in Mid-Continental North America,” Vegetation History and Archaeobotany, Vol. 22, No. 3, 2013, pp. 171-183. doi:10.1007/s00334-012-0369-8
[27] P. H. Gregory, “The Microbiology of the Atmosphere,” Leonard Hill, Aylesbury, 1973.
[28] S. Sugita, M.-J. Gaillard and A. Brostrom, “Landscape Openness and Pollen Records: A Simulation Approach,” Holocene, Vol. 9, No. 4, 1999, pp. 409-421. doi:10.1191/095968399666429937
[29] G. Eisenhut, “Investigations on the Morphology and Ecology of Pollen Grains of Native and Introduced Forest Trees,” Paul Parey, Hamburg, 1961.
[30] M.-J. Gaillard, et al., “The Use of Modelling and Simulation Approach in Reconstructing Past Landscapes from Fossil Pollen Data: A Review and Results from the POLLANDCAL Network,” Vegetation History and Archaeobotany, Vol. 17, No. 5, 2008, pp. 419-443. doi:10.1007/s00334-008-0169-3
[31] M. J. Bunting, et al., “Vegetation Structure and Pollen Source Area,” Holocene, Vol. 14, No. 5, 2004, pp. 651-660. doi:10.1191/0959683604hl744rp
[32] R. C. Anderson, J. S. Fralish and J. M. Baskin, “Savannas, Barrens, and Rock Outcrop Plant Communities of North America,” Cambridge University Press, Cambridge, 1999.
[33] L. A. Real, “Pollination Biology,” Academic Press, Inc., Orlando, 1983.
[34] J. W. Williams and B. Shuman, “Obtaining Accurate and Precise Environmental Reconstructions from the Modern Analog Technique and North American Surface Pollen Dataset,” Quaternary Science Reviews, Vol. 27, No. 7-8, 2008, pp. 669-687. doi:10.1016/j.quascirev.2008.01.004
[35] H. von Stedingk, R. M. Fyfe and A. Allard, “Pollen Productivity Estimates from the Forest-Tundra Ecotone in West-Central Sweden: Implications for Vegetation Reconstruction at the Limits of the Boreal Forest,” Holocene, Vol. 18, No. 2, 2008, pp. 323-332. doi:10.1177/0959683607086769
[36] S. Hellman, et al., “The Reveals Model, a New Tool to Estimate Past Regional Plant Abundance from Pollen Data in Large Lakes: Validation in Southern Sweden,” Journal of Quaternary Science, Vol. 23, No. 1, 2008, pp. 21-42. doi:10.1002/jqs.1126
[37] J. W. Williams, B. Shuman and P. J. Bartlein, “Rapid Responses of the Prairie-Forest Ecotone to Early Holocene Aridity in Mid-Continental North America,” Global and Planetary Change, Vol. 66, No. 3/4, 2009, pp. 195-207. doi:10.1016/j.gloplacha.2008.10.012