ACES  Vol.3 No.3 A , July 2013
Synthesis and Enhanced Guest-Binding Affinities of Dendrimer-Based Cyclophane Tetramer and Octamer
Abstract: Dendritic cyclophane tetramer and octamer were prepared by aminolysis of succinimidyl ester derivative of tetraaza [] paracyclophane with the corresponding poly(amidoamine) dendrimers as a scaffold, followed by removal of the protecting groups. The present cyclophane tetramer and octamer showed enhanced guest-binding affinities toward fluorescent guests such as 6-p-toluidinonaphthalene-2-sulfonate and 6-anilinonaphthalene-2-sulfonate, in comparison with those of monocyclic cyclophane, reflecting multivalency effects in macrocycles.
Cite this paper: O. Hayashida, T. Nakashima and Y. Kaku, "Synthesis and Enhanced Guest-Binding Affinities of Dendrimer-Based Cyclophane Tetramer and Octamer," Advances in Chemical Engineering and Science, Vol. 3 No. 3, 2013, pp. 33-37. doi: 10.4236/aces.2013.33A1004.

[1]   Y. C. Lee, R. T. Lee, K. Rice, Y. Ichikawa and T.-C. Wong, “Topography of Binding Sites of Animal Lectins: Ligands’ View,” Pure & Applied Chemistry, Vol. 63, No. 4, 1991, pp. 499-506. doi:10.1351/pac199163040499

[2]   Y. C. Lee and R. T. Lee, “Carbohydrate-Protein Interactions: Basis of Glycobiology,” Accounts of Chemical Research, Vol. 28, No. 8, 1995, pp. 321-327. doi:10.1021/ar00056a001

[3]   O. Hayashida and T. Nakashima, “Synthesis of Peptide-Based Cyclophane Oligomers Having Multivalently Enhanced Guest-Binding Affinity,” Bulletin of the Chemical Society of Japan, Vol. 85, No. 6, 2013, pp. 715-723. doi:10.1246/bcsj.20120076

[4]   O. Hayashida and T. Nakashima, “Synthesis of Cyclophane Dimer Using Cyclophane-Tethered Fmoc-Amino Acid Derivatives as a Multivalent Host,” Chemistry Letters, Vol. 40, No. 2, 2011, pp. 134-135. doi:10.1246/cl.2011.134

[5]   G. Franc and A. K. Kakkar, “Click Methodologies: Efficient, Simple and Greener Routes to Design Dendrimers,” Chemical Society Reviews, Vol. 39, 2010, pp. 1536-1544. doi:10.1039/b913281n

[6]   L. Albertazzi, M. Fernandez-Villamarin, R. Riguera and E. Fernandez-Megia, “Peripheral Functionalization of Dendrimers Regulates Internalization and Intracellular Trafficking in Living Cells,” Bioconjugate Chemistry, Vol. 23, No. 5, 2012, pp. 1059-1068. doi:10.1021/bc300079h

[7]   J. M. J. Fréchet, “Dendrimers and Supramolecular Chemistry,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 8, 2002, 4782-4787.

[8]   R. Esfand and D. A. Tomalia, “Poly(amidoamine) (PAMAM) Dendrimers: From Biomimicry to Drug Delivery and Biomedical Applications,” Drug Discovery Today, Vol. 6, No. 8, 2001, pp. 427-436. doi:10.1016/S1359-6446(01)01757-3

[9]   The calculations were carried out by Using Macromodel 7.5 Software.

[10]   D. Matulis and R. Lovrien, “1-Anilino-8-naphthalene Sulfonate Anion-Protein Binding Depends Primarily on Ion Pair Formation,” Biophysics Journal, Vol. 74, No. 1, 1998, pp. 422-429. doi:10.1016/S0006-3495(98)77799-9

[11]   H. Benesi and J. Hildebrand, “A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons,” Journal of the American Chemical Society, Vol. 71, No. 8, 1949, pp. 2703-2707. doi:10.1021/ja01176a030