JMP  Vol.4 No.7 B , July 2013
Thermal Analysis of Thermophysical Data for Equilibrium Pure Fluids
Author(s) Boris Sedunov*
ABSTRACT

The thermal analysis of precise thermophysical data for pure fluids from electronic databases is developed to investigate the molecular interaction mechanisms and parameters and the structural features of heterogeneities in fluids. The method is based on the series expansion of thermophysical values by powers of the monomer fraction density. Unlike the virial expansion by powers of the total density, the series expansion terms in this method directly reflect properties of the corresponding cluster fractions. The internal energy had been selected among thermophysical properties as the most informative for this method. The thermal analysis of its series expansion coefficients permits to estimate the temperature dependence of the pair bond parameters, the clusters’ bond energies and equilibrium constants, the structural transitions between dominating isomers of clusters. The application of method to different pure fluids, including noble and molecular gases with van der Waals and polar molecular interactions, brings unknown clusters’ characteristics for the fluids under investigation. The thermal analysis of the ordinary and heavy Water vapors points on no trivial isotopic effects. The unpredictable growth of the pair bond energy with temperature in Alkanes points on existence in hydrocarbons of some unknown molecular interaction forces in addition to dispersion forces.


Cite this paper
B. Sedunov, "Thermal Analysis of Thermophysical Data for Equilibrium Pure Fluids," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 8-15. doi: 10.4236/jmp.2013.47A2002.
References
[1]   B. E. Poling, J. M. Prausnitz and J. P. O’Connell, “The Properties of Gases and Liquids,” 5th Edition, McGraw-Hill, New York, 2001.

[2]   J. Rowlinson, “Cohesion: A Scientific History of Intermolecular Forces,” Cambridge University Press, Cambridge, 2002.

[3]   I. G. Kaplan, “Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials,” John Wiley & Sons, Ltd., Hoboken, 2006. doi:10.1002/047086334X

[4]   B. Sedunov, Journal of Thermodynamics, Vol. 2012, 2012, 13 p.

[5]   M. A. Anisimov, “Thermodynamics at the Meso- and Na-noscale,” In: J. A. Schwarz, C. Contescu and K. Putyera, Eds., Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York, 2004, pp. 3893-3904.

[6]   K. Nishikawa and T. Morita, Chemical Physics Letters, Vol. 316, 2000, pp. 238-242. doi:10.1016/S0009-2614(99)01241-5

[7]   B. Sedunov, International Journal of Thermodynamics, Vol. 11, 2008, pp. 1-9.

[8]   I. J. Ford, Journal of Chemical Physics, Vol. 106, 1997, p. 9734. doi:10.1063/1.473836

[9]   S. S. Harris and I. J. Ford, Journal of Chemical Physics, Vol. 118, 2003, p. 9216. doi:10.1063/1.1568336

[10]   B. M. Smirnov, Physics-Uspekhi, Vol. 54, 2011, pp. 691-721. doi:10.3367/UFNe.0181.201107b.0713

[11]   P. Paricaud et al., Journal of Chemical Physics, Vol. 122, 2005, p. 244511. doi:10.1063/1.1940033

[12]   B. Sedunov, “Cluster Fractions’ Equilibrium in Gases,” Book of Abstracts of the VIII Iberoamerican Conference on Phase Equilibria and Fluid Properties for Process Design, (Equifase ’09), Praia da Rosha, 2009, p. 161.

[13]   R. Feynman, “Statistical Mechanics; A Set of Lectures,” Benjamin, Inc., 1972.

[14]   I. J. Ford, Part C: Journal of Mechanical Engineering Science, Vol. 218, 2004, pp. 883-899.

[15]   I. Kusaka and D. W. Oxtoby, Journal of Chemical Physics, Vol. 110, 1999, pp. 5249-5261. doi:10.1063/1.478421

[16]   P. Schaaf, B. Senger and H. Reiss, Journal of Chemical Physics, Vol. 101, 1997, p. 8740. doi:10.1021/jp970428t

[17]   A. Y. Zasetsky et al., Atmospheric Chemistry and Physics, Vol. 9, 2009, pp. 965-971. doi:10.5194/acp-9-965-2009

[18]   J. Frenkel, “Kinetic Theory of Liquids,” Oxford University Press, Oxford, 1946.

[19]   B. Sedunov, Journal of Thermodynamics, Vol. 2011, 2011, 5 p.

[20]   B. Sedunov, American Journal of Analytical Chemistry, Vol. 3, 2012, pp. 899-904. doi:10.4236/ajac.2012.312A119

[21]   J. E. Mayer and G. M. Mayer, “Statistical Mechanics,” John Wiley and Sons, New York, 1977.

[22]   B. Sedunov, “Equilibrium Structure of Dense Gases,” Proceedings of the JEEP-2013, Nancy, MATEC Web of Conferences, 2013. http://www.matec-conferences.org/articles/matecconf/pdf/2013/01/matecconf_jeep13_01002.pdf

[23]   B. Le Neindre, Chemistry and Computational Simulation. Butlerov Communications, Vol. 3, 2002, pp. 29-31.

[24]   M. Frenkel, “NIST ThermoData Engine: Increasing Value, Preventing ‘Pollution’, Broadening Scope, and Providing Communications for Thermodynamic Property Information,” Industrial Use of Molecular Thermodynamics Workshop, Lyon, 2012. http://www.sfgp.asso.fr/userfiles/M%C3%A9rieux20%20-%209h00%20-%20Plenary%20-%20FRENKEL.pdf

[25]   Official Site: “NIST Thermodynamics Research Center.” http://trc.nist.gov/

[26]   NIST Database, “Thermophysical Properties of Fluid Systems,” 2013. http://webbook.nist.gov/chemistry/fluid

[27]   NIST Database, “Thermophysical Properties of Gases Used in the Semiconductor Industry,” 2013. http://properties.nist.gov/fluidsci/semiprop/

[28]   Ch. Kittel, “Thermal Physics,” John Wiley and Sons, Inc., New York, 1969.

 
 
Top