Balanced Min Cost Flow on Skew Symmetric Networks with Convex Costs

Henning Soller^{*}

Show more

References

[1] W. Kocay and D. Stone, “Balanced Network Flows,” Bulletin of the Institute of Combinatorics and Its Applications, Vol. 7, No. 1, 1993, pp. 17-32.

[2] N. Appolonio and A. Sebo, “Minconvex Factors of Prescribed Size in Graphs,” Technical Report 145, Les Cahiers du Laboratoire Leibniz, 2006.

[3] A. Berger and W. Hochstattler, “Minconvex Graph Factors of Prescribed Size and a Simpler ′Reduction to Weighted f-Factors,” Electronic Notes in Discrete Mathematics, Vol. 28, 2007, pp. 69-76.
doi:10.1016/j.endm.2007.01.011

[4] C. Fremuth-Paeger and D. Jungnickel. “Balanced Network Flows. I. A Unifying Framework for Design and Analysis of Matching Problems,” Networks, Vol. 33, No. 1, 1999, pp. 1-28.
doi:10.1002/(SICI)1097-0037(199901)33:1<1::AID-NET1>3.0.CO;2-M

[5] B. Korte and J. Vygen, “Combinatorial Optimization,” Springer Verlag, New York, 2000.
doi:10.1007/978-3-662-21708-5

[6] D. Jungnickel, “Graphs, Networks and Algorithms,” Springer Verlag, New York, 2004.

[7] C. Fremuth-Paeger, “Degree Constrained Subgraph Problems and Network Flow Optimization,” Wißner Verlag, Augsburg, 1997.

[8] C. Weber, “Minimum Cost Flow Grundlagen und Erste Algorithmen,” 2005.
http://www.informatik.uni-

trier.de/naeher/professur/courses/ws2005/exe

rcises/seminar/ausarbeitungweber.pdf

[9] D. Bertsekas, “Network Optimization: Continuous and Discrete Models,” Athena Scientific, Belmont, 1998.

[10] A. V. Goldberg and A. V. Karzanov, “Path Problems in Skew-Symmetric Graphs,” SODA: ACM Symposium on Discrete Algorithms, Arlington, 23-25 January 1994, pp. 526-535.

[11] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network Flows: Theory, Algorithms and Applications,” Prentice Hall, 1993.