Counting the Number of Squares Reachable in k Knight’s Moves

Show more

References

[1] B. A. Balof and J. J. Watkins, “Knight’s Tours and Magic Squares,” Congressus Numerantium, Vol. 120, No. 1, 1996, pp. 23-32.

[2] J. J. Watkins, “Across the Board: The Mathematics of Chessboard Problems,” Princeton University Press, Princeton, 2004.

[3] P. P. Das and B. N. Chatterji, “Knight’s Distance in Digital Geometry,” Pattern Recognition Letters, Vol. 7, No. 4, 1988, pp. 215-226. doi:10.1016/0167-8655(88)90105-5

[4] W. M. Hexana and N. J. Coville, “Indium as a Chemical Promoter in Fe-Based Fischer-Tropsch Synthesis,” Applied Catalysis A: General, Vol. 377, No. 1, 2010, pp. 150-157. doi:10.1016/j.apcata.2010.01.031

[5] E. R. Scerri, “The Periodic Table: Its Story and Its Significance,” Oxford University Press, Oxford, 2007.

[6] P. P. Das, “An Algorithm for Computing the Number of the Minimal Paths in Digital Images,” Pattern Recognition Letters, Vol. 9, No. 2, 1989, pp. 107-116.
doi:10.1016/0167-8655(89)90043-3

[7] J. Mukherjee, P. P. Das, M. Aswatha Kumar and B. N. Chatterji, “On Approximating Euclidean Metrics by Digital Distances in 2D and 3D,” Pattern Recognition Letters, Vol. 21, No. 6-7, 2000, pp. 573-582.
doi:10.1016/S0167-8655(00)00022-2

[8] M. Katzman, “Counting Monomials,” Journal Algebraic Combinatorics, Vol. 22, No. 3, 2005, pp. 331-341.
doi:10.1007/s10801-005-4531-6

[9] N. J. A. Sloane, “On-Line Encyclopedia of Integer Sequences,” 2013. http://www.oeis.org