Back
 ACES  Vol.3 No.3 A , July 2013
Aggregation Behavior of Amphiphilic PAMAM-Based Hyperbranched Polymer in the Presence of Conventional Small Molecular Surfactants
Abstract: Hyperbranched polymer composed of G1 polyamidoamine (PAMAM) and branched with poly (propylene oxide) (PPO)-block-poly (ethylene oxide) (PEO) was investigated to interact with sodium dodecyl sulfate (SDS) and di-dodecyl dimethyl ammonium bromide (DDAB), respectively, by the methods of turbidity titration and analysis, rheology measurements, dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was noticeable that even at extremely low concentration of SDS (even far from the critical micelle concentration (cmc)), the system exhibits high turbidity, indicating that SDS molecules can insert into cationic amine groups and hydrophobic microenvironment, resulting in the formation of polymer-SDS complexes with large size. At the SDS concentration range of below 0.1 mM, the turbidity and cloud point (CP) temperature of the system keep almost invariable, mostly because of the repulsion between SDS molecules and the complexes. And, therefore, the size of the mixed aggregates retains almost constant. In the case of vesicle system of DDAB, the aggregates are in the size of 100 nm - 200 nm and 500 nm - 3000 nm at the concentrations of 30 mM and 100 mM, respectively. However, in the mixture of hyperbranched polymer with DDAB, by comparison, the size is smaller in a binary system than that of in DDAB system. So it is reasonable to infer that DDAB molecules remove from multilamellar vesicles of DDAB to the hydrophobic microenvironment of hyperbranched polymer aggregates, with the addition of the hyperbranched polymer. It leads to the destruction of the gel-like conformation in DDAB system, leading to the shear thinning of the mixture and, as a result, the viscoelastic character of the system is lost in a large degree.
Cite this paper: H. Yang, D. Yu, H. Wang, Q. Xie, J. Wu and J. Wang, "Aggregation Behavior of Amphiphilic PAMAM-Based Hyperbranched Polymer in the Presence of Conventional Small Molecular Surfactants," Advances in Chemical Engineering and Science, Vol. 3 No. 3, 2013, pp. 11-18. doi: 10.4236/aces.2013.33A1002.
References

[1]   C. Gao and D. Yan, “Hyperbranched Polymers: From Synthesis to Applications,” Progress in Polymer Science, Vol. 29, No. 3, 2004, pp. 183-275. doi:10.1016/j.progpolymsci.2003.12.002

[2]   P. J. Flory, “Molecular Size Distribution in Three Dimensional Polymers. VI. Branched Polymers Containing A-R-Bf-1 Type Units,” Journal of the American Chemical Society, Vol. 74, No. 11, 1952, pp. 2718-2723. doi:10.1021/ja01131a008

[3]   C. R. Yates and W. Hayes, “Synthesis and Applications of Hyperbranched Polymers,” European Polymer Journal, Vol. 40, No. 7, 2004, pp. 1257-1281. doi:10.1016/j.eurpolymj.2004.02.007

[4]   E. K. Yeow, K. P. Ghiggino, J. N. Reek, M. J. Crossley, A. W. Bosman, A. P. Schenning and E. W. Meijer, “The Dynamics of Electronic Energy Transfer in Novel Multiporphyrin Functionalized Dendrimers: A Time-Resolved Fluorescence Anisotropy Study,” The Journal of Physical Chemistry B, Vol. 104, No. 12, 2000, pp. 2596-2606. doi:10.1021/jp993116u

[5]   M. S. Diallo, W. Arasho, J. H. Johnson Jr. and W. A. Goddard III, “Dendritic Chelating Agents. 2. U(VI) Binding to Poly(amidoamine) and Poly(propyleneimine) Dendrimers in Aqueous Solutions,” Environmental Science & Technology, Vol. 42, No. 5, 2008, pp. 1572-1579. doi:10.1021/es0715905

[6]   X. Xin, G. Y. Xu, Z. Q. Zhang, Y. J. Chen and F. Wang, “Aggregation Behavior of Star-Like PEO-PPO-PEO Block Copolymer in Aqueous Solution,” European Polymer Journal, Vol. 43, No. 7, 2007, pp. 3106-3111. doi:10.1016/j.eurpolymj.2007.04.005

[7]   A. Sh. King, I. K. Martin and L. J. Twyman, “Synthesis and Aggregation of Amine-Cored Polyamidoamine Dendrons Synthesised without Invoking a Protection/Deprotection Strategy,” Polymer International, Vol. 55, 2006, p. 798-807.

[8]   J. Wang, C. Q. Li, J. Li and J. Z. Yang, “Demulsification of Crude Oil Emulsion Using Polyamidoamine Dendrimers,” Separation Science and Technology, Vol. 42, No. 9, 2007, pp. 2111-2120. doi:10.1080/01496390701241857

[9]   A. G. Escudero, M. A. Azagarsamy, N. Theddu, R. W. Vachet and S. Thayumanavan, “Selective Peptide Binding Using Facially Amphiphilic Dendrimers,” Journal of the American Chemical Society, Vol. 130, No. 33, 2008, pp. 11156-11163. doi:10.1021/ja803082v

[10]   X. F. Li, T. Imae, D. Leisner and M. A. Lopez-Quintela, “Lamellar Structures of Anionic Poly(amido amine) Dendrimers with Oppositely Charged Di-dodecyl dimethyl ammonium Bromide,” The Journal of Physical Chemistry B, Vol. 106, No. 47, 2002, pp. 12170-12177. doi:10.1021/jp020926o

[11]   L. Porcar, Y. Liu, R. Verduzco, K. L. Hong, P. D. Butler, L. J. Magid, G. S. Smith and W. R. Chen, “Structural Investigation of PAMAM Dendrimers in Aqueous Solutions Using Small-Angle Neutron Scattering: Effect of Generation,” The Journal of Physical Chemistry B, Vol. 112, No. 47, 2008, pp. 14772-14778. doi:10.1021/jp805297a

[12]   P. Alexandridis, “Amphiphilic Copolymers and Their Applications, ” Current Opinion in Colloid & Interface Science, Vol. 1, No. 4, 1996, pp. 490-501. doi:10.1016/S1359-0294(96)80118-X

[13]   Y. Cheng, Y. Li, Q. Wu and T. Xu, “New Insights into the Interactions between Dendrimers and Surfactants by Two Dimensional NOE NMR Spectroscopy,” The Journal of Physical Chemistry B, Vol. 112, No. 40, 2008, pp. 12674-12680.

[14]   M. F. Ottaviani, P. Andechaga, N. J. Turro and D. A. Tomalia, “Model for the Interactions between Anionic Dendrimers and Cationic Surfactants by Means of the Spin Probe Method,” The Journal of Physical Chemistry B, Vol. 101, No. 31, 1997, pp. 6057-6065. doi:10.1021/jp963271y

[15]   K. Esumi, R. Saika, M. Miyazaki and K. Torigoe, “Interactions of Poly(amidoamine)dendrimers Having Surface Carboxyl Groups with Cationic Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 166, No. 1-3, 2000, pp. 115-121. doi:10.1016/S0927-7757(99)00451-3

[16]   M. Miyazaki, K. Torigoe and K. Esumi, “Interactions of Sugar-Persubstituted Poly(amidoamine) Dendrimers with Anionic Surfactants,” Langmuir, Vol. 16, No. 4, 2000, pp. 1522-1528. doi:10.1021/la990347j

[17]   K. Esumi, H. Chiba, H. Mizutani, K. Shoji and K. Torigoe, “Physicochemical Properties of Aqueous Mixed Solutions of Sugar-Persubstituted Poly(amidoamine) dendrimers and Anionic Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 179, No. 1, 2001, pp. 103-109. doi:10.1016/S0927-7757(00)00722-6

[18]   M. S. Bakshi and R. Sood, “Cationic Surfactant-Poly(amido amine) Dendrimer Interactions Studied by Krafft Temperature Measurements,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 233, 2003, pp. 203-210.

[19]   D. Astruc, E. Boisselier and C. Ornelas, “Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine,” Chemical Reviews, Vol. 110, No. 4, 2010, pp. 1857-1959. doi:10.1021/cr900327d

[20]   K. Esumi, T. Chiba, H. Mizutami, K. Shoji and K. Torigoe, “Interactions of Poly(amidoamine)dendrimers Having Surface Carboxyl Groups with Cationic Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 166, No. 1-3, 2000, pp. 115-121. doi:10.1016/S0927-7757(99)00451-3

[21]   K. Esumi, T. Chiba, H. Misutani, K. Shoji and K. Torigoe, “Physicochemical Properties of Aqueous Mixed Solutions of Sugar-Persubstituted Poly(amidoamine)dendrimers and Anionic Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 179, No. 1, 2001, pp. 103-109. doi:10.1016/S0927-7757(00)00722-6

[22]   T. Yoshimura, J. Fukai, H. Mizutani and K. J. Esumi, Colloid Interface Sci., Vol. 255, 2002, p. 428.

[23]   H. Yang, Y. Han, S. Yang, W. Zhang, G. Tan, Y. Wang and J. Wang, “Aggregation Behaviour of a Novel Series of Polyamidoamine-Based Dendrimers in Aqueous Solution,” Supramolecular Chemistry, Vol. 21, No. 8, 2009, pp. 754-758. doi:10.1080/10610270902980598

[24]   H. Yang, S. Yang, X. Wu, J. Zhou and J. Wang, “Syntheses and Surface Properties of a Novel Series of Polyamidoamine Branched with PPO-PEO Dendrimers,” Acta Physico-Chimica Sinica, Vol. 25, 2009, pp. 1806-1810.

[25]   W. Zhang, G. Dong, H. Yang, J. Sun, J. Zhou and J. Wang, “Synthesis, Surface and Aggregation Properties of a Series of Amphiphilic Dendritic Copolymers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 348, No. 1-3, 2009, pp. 45-48. doi:10.1016/j.colsurfa.2009.06.029

[26]   R. Zana, M. Benrraou and R. Rueff, “Alkanediyl-. alpha.,.omega.-bis(dimethylalkylammonium bromide) Surfactants. 1. Effect of the Spacer Chain Length on the Critical Micelle Concentration and Micelle Ionization Degree,” Langmuir, Vol. 7, No. 6, 1991, pp. 1072-1075. doi:10.1021/la00054a008

[27]   M. S. Bakshi and A. Kaura, “Fluorescence Studies of Interactions of Ionic Surfactants with Poly(amidoamine) Dendrimers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 284, No. 2, 2005, pp. 680-686.

[28]   T. Yoshimura, J. Fukai, H. Mizutani and K. Esumi, “Physicochemical Properties of Quaternized Poly(amidoamine) Dendrimers with Four Octyl Chains,” Journal of Colloid and Interface Science, Vol. 255, No. 2, 2002, pp. 428-431.

[29]   M. S. Bakshi, A. Kaura, R. Sood, G. Kaur, T. Yoshimura, K. Torigoe and K. Esumi, “Topographical and Photophysical Properties of Poly(amidoamine) Dendrimers with Ionic Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 266, No. 1-3, 2005, pp. 181-190. doi:10.1016/j.colsurfa.2005.06.059

[30]   Y. Cheng, Y. Li, Q. Wu and T. Xu, “New Insights into the Interactions between Dendrimers and Surfactants by Two Dimensional NOE NMR Spectroscopy,” The Journal of Physical Chemistry B, Vol. 112, No. 40, 2008, pp. 12674-12680. doi:10.1021/jp804954j

[31]   K. Esumi, R. Saika, M. Miyazaki, K. Torigoe and Y. Koide, “Interactions of Poly(amidoamine)dendrimers Having Surface Carboxyl Groups with Cationic Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 166, No. 1-3, 2000, pp. 115-121. doi:10.1016/S0927-7757(99)00451-3

[32]   H. Hoffmann, C. Thunig, P. Schmiedel and U. Munkert, “Surfactant Systems with Charged Multilamellar Vesicles and Their Rheological Properties,” Langmuir, Vol. 10, No. 11, 1994, pp. 3972-3981. doi:10.1021/la00023a013

[33]   G. Montalvo, M. Valiente and A. Khan, “Shear-Induced Topology Changes in Liquid Crystals of the Soybean Lecithin/DDAB/Water System,” Langmuir, Vol. 23, No. 21, 2007, pp. 10518-10524. doi:10.1021/la701539f

 
 
Top