The 4-Point α-Ary Approximating Subdivision Scheme

Show more

References

[1] G. de Rham, “Un Peude Mathematiques a Proposed Une Courbe Plane,” Revwede Mathematiques Elementry II, Oevred Completes, 1947, pp. 678-689.

[2] G. M. Chaikin, “An Algorithm for High-Speed Curve Generation,” Computer Graphics and Image Processing, Vol. 3, No. 4, 1974, pp. 346-349.
doi:10.1016/0146-664X(74)90028-8

[3] J. -A. Lian, “On A-ary Subdivision for Curve Design: I. 4-point and 6-point Interpolatory Schemes,” Applications and Applied Mathematics: An International Journal, Vol. 3, No. 1, 2008, pp.18-29.

[4] J. -A. Lian, “On A-ary Subdivision for Curve Design: II. 3-point and 5-point Interpolatory Schemes,” Applications and Applied Mathematics: An International Journal, Vol. 3, No. 2, 2008, pp. 176-187.

[5] J. -A. Lian, “On a-ary Subdivision for Curve design: III. 2m-point and (2m+1) point Interpolatory Schemes,” Applications and Applied Mathematics: An International Journal, Vol. 4, No. 2, 2009, pp. 434-444.

[6] G. Mustafa and F. Khan, “A New 4-point Quaternary Approximating Subdivision Scheme,” Abstract and Applied Analysis, Vol. 2009, Article ID 301967, 14 pages.

[7] G. Mustafa and A. R. Najma , “The Mask of (2b + 4)-point n-ary Subdivision Scheme,” Computing, Vol. 90, No. 1-2, 2010, pp. 1-14. doi:10.1007/s00607-010-0108-x

[8] A. Ghaffar, G. Mustafa and K. Qin, “Unification and Application of 3-point Approximating Subdivision Schemes of Varying Arity,” Open Journal of Applied Sciences, Vol. 2, No. 4B, 2012, pp. 48-52.
doi:10.4236/ojapps.2012.24B012

[9] M. F. Hassan and N. A. Dodgson, “Ternary and Three-point Univariate Subdivision Schemes,” In: A. Cohen, J. L. Marrien, L. L. Schumaker (Eds.), Curve and Surface Fitting: Sant-Malo2002, Nashboro Press, Brentwood, 2003, pp. 199-208.

[10] N. Dyn, “Analysis of Convergence and Smoothness by the Formalism of Laurent Polynomials,” In: A.Iske, E. Quak, M. S Floater (Eds), Tutorials on Multiresolution in Geometric Modelling, Springer, 2002, pp. 51-68.
doi:10.1007/978-3-662-04388-2_3

[11] G. Mustafa, F. Khan and A. Ghaffar, “The ^{m}-Point Approximating Subdivision Scheme,” Lobachevskii Journal of Mathematics, Vol. 30, No. 2, 2009, pp. 138-145. doi:10.1134/S1995080209020061

[12] N. Dyn, M. S. Floater and K. Horman, “A Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extension,” In Mathematical Methods for Curves and Surfaces: Tromso 2004, M. Daehlen, K. Morken, and L. L. Schumaker (eds.), 2005, pp. 145-156.

[13] H. Zheng, M. Hu and G. Peng, “P-ary Subdivision Generalizing B-splines,” Second International Conference: On Computer and Electrical Engineering, 2009, pp. 214-218. doi:10.1109/ICCEE.2009.204

[14] A. Ghaffar and G. Mustafa, “A Family of Even-Point ternary Approximating Schemes,” ISRN Applied Mathematics, Vol. 2012, 2012, Article ID 197383, 14 pages.

[15] H. Zheng, M. Hu and G. Peng, “Ternary Even Symmetric 2n-point Subdivision,” International Conference on: Computational Intelligence and Software Engineering,2009, pp. 1-4.doi:10.1109/CISE.2009.5363033

[16] K. P. Ko, B. -G. Lee and G. Joon Yoon. “A Ternary 4-point Approximating Subdivision Scheme,” Applied Mathematics and Computation, Vol. 190, 2007

[17] K. P. Ko, “A Quatnary Approximating 4-point Subdivision Scheme,” J. KSIAM, Vol. 13, No. 4, 2009, PP. 307-341.

[18] C. Beccari, G. Casciola and L. Romani, “A Non-stationary Uniform Tension Controlled Interpolating 4-point Scheme Reproducing Conics,” Computer Aided Geo-metric Design, Vol. 24, No. 1, 2007, pp. 1-9.

[19] G. Casciola and L. Romani. “An Interpolating 4-point c^{2} Ternarynon-stationary Subdivision Scheme with Tension Control,” Computer Aided Geometric Design, Vol. 24, No. 2, 2007, pp. 210-219.

[20] G. Casciola and L. Romani, “Shape Controlled Interpolatory Ternary Subdivision,” Applied Mathematics and Computation, Vol. 215, No. 1, 2009, pp. 916-927.

[21] G. Deslauriers and S. Dubic, “Symmetric Iterative Interpolation Process,” Constractive Approximation, Vol. 5, No. 1, 1989, pp. 49-68. doi:10.1007/BF01889598

[22] M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson and M. A. Sabin, “An Interpolating 4-points C^{2} Ternary Stationary Subdivision Scheme,” Computer Aided Geometric Design, Vol. 19, 2002, pp. 1-18.