AJAC  Vol.4 No.7 A , July 2013
Study of Functionalized Gold Nanoparticles with Anti-gp63 IgG Antibody for the Detection of Glycoprotein gp63 in Membrane Surface of Leishmania Genus Parasites
Abstract: In this work we present the preparation and functionalization of gold nanoparticles (AuNPs) for the detection of presence of gp63 glycoprotein in the surface of Leishmania genus parasites. AuNPs were prepared by induced laser ablation in a clean and biologically suitable media. The nanoparticles were functionalized with anti-gp63 lgG antibody in order to study the interaction with the glycoprotein component gp63 (63 kDa) present on the membrane surface of Leishmania genus parasites. The functionalized AuNPs showed potential as a spectrometric indicator of the parasite existence, both by the detection of the presence of the gp63 in solution and through the specific interaction with the parasites in vitro. The specificity of the study opens a new line of research on the use of modified nanoparticles in the development of a fast and easy assay for Leishmaniosis diagnostics.
Cite this paper: P. Rodríguez, H. Rojas, M. Medina, J. Arrivillaga, Y. Francisco, F. Dager, V. Piscitelli, M. Caetano, A. Fernández and J. Castillo, "Study of Functionalized Gold Nanoparticles with Anti-gp63 IgG Antibody for the Detection of Glycoprotein gp63 in Membrane Surface of Leishmania Genus Parasites," American Journal of Analytical Chemistry, Vol. 4 No. 7, 2013, pp. 100-108. doi: 10.4236/ajac.2013.47A014.

[1]   A. Gultekin, A. Ersoz, D. Hur, N. Sariozlu, A. Denizli and R. Say, “Gold Nanoparticles Having Dipicolinic Acid Imprinted Nanoshell for Bacillus Cereus Spores Recognition,” Applied Surface Science, Vol. 256, No. 1, 2009, pp. 142-148. doi:10.1016/j.apsusc.2009.07.097

[2]   C. Wang, J. Wang, D. Liu and Z. Wang, “Gold Nanoparticle-Based Colorimetric Sensor for Studying the Interactions of β-Amyloid Peptide with Metallic Ions,” Talanta, Vol. 80, No. 5, 2010, pp. 1626-1631. doi:10.1016/j.talanta.2009.09.052

[3]   J. Wang, T. Duan, L. Sun, D. Liu and Z. Wang, “Functional Gold Nanoparticles for Studying the Interaction of Lectin with Glycosyl Complex on Living Cellular Surfaces,” Analytical Biochemistry, Vol. 392, No. 1, 2009, pp. 77-82. doi:10.1016/j.ab.2009.05.036

[4]   J. Kneipp, H. Kneipp, B. Wittig and K. Kneipp, “Novel Optical Nanosensors for Probing and Imaging Live Cells,” Nanomedicine, Vol. 6, No. 2, 2010, pp. 214-226. doi:10.1016/j.nano.2009.07.009

[5]   M. Velasco-Garcia, “Optical Biosensors for Probing at the Cellular Level: A Review of Recent Progress and Future Prospects,” Seminars in Cell & Developmental Biology, Vol. 20, No. 1, 2009, pp. 27-33. doi:10.1016/j.semcdb.2009.01.013

[6]   T. Vo-Dinh, “Nanosensing at the Single Cell Level,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 63, No. 2, 2008, pp. 95-103. doi:10.1016/j.sab.2007.11.027

[7]   H. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri and A. Dasgupta, “Cell Selective Response to Gold Nanoparticles,” Nanomedicine, Vol. 3, No. 2, 2007, pp. 111-119. doi:10.1016/j.nano.2007.03.005

[8]   B. Leng, L. Zou, J. Jiang and H. Tian, “Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media Using Chemodosimeter-Functionalized Gold Nanoparticles,” Sensors and Actuators B: Chemical, Vol. 140, No. 1, 2009, pp. 162-169. doi:10.1016/j.snb.2009.03.074

[9]   I. Sendroiu, L. Gifford, A. Lupták and M. Corn, “Ultrasensitive DNA Microarray Biosensing via in Situ RNA Transcription-Based Amplification and Nanoparticle-Enhanced SPR Imaging,” Journal of the American Chemical Society, Vol. 133, No. 12, 2011, pp. 4271-4273. doi:10.1021/ja2005576

[10]   W. Hall, N. Ngatia and R. Van Duyne, “LSPR Biosensor Signal Enhancement Using Nanoparticle-Antibody Conjugates,” The Journal of Physical Chemistry C, Vol. 115, No. 5, 2011, pp. 1410-1414. doi:10.1021/jp106912p

[11]   P. Borst and M. Oullette, “New Mechanisms of Drug Resistance in Parasitic Protozoa,” Annual Review of Microbiology, Vol. 49, 1995, pp. 427-460. doi:10.1146/annurev.mi.49.100195.002235

[12]   F. Oliveira, R. Jochim, J. Valenzuela and S. Kamhawi, “Sand Flies, Leishmania, and Transcriptome-Borne Solutions,” Parasitology International, Vol. 58, No. 1, 2009, pp. 1-5. doi:10.1016/j.parint.2008.07.004

[13]   F. Dantas-Torres, “Canine Leishmaniosis in South America,” Parasit Vectors, Vol. 2, No. S1, 2009. doi:10.1186/1756-3305-2-S1-S1

[14]   Pan American Health Organization, Cuaderno Técnico No. 44, Washington DC, 1996.

[15]   F. Figueiredo, M. Madeira, R. Menezes, R. Pacheco, M. Pires, M. Furtado, A. Pinto and T. Schubach, “Efficacy of an Indirect Immunofluorescence Test in the Diagnosis of Canine Leishmaniosis,” The Veterinary Journal, Vol. 186, No. 1, 2010, pp. 123-124. doi:10.1016/j.tvjl.2009.06.030

[16]   R. Etges, J. Bouvier, R. Hoffman and C. Bordier, “Evidence That the Major Surface Proteins of Three Leishmania Species Are Structurally Related,” Molecular and Biochemical Parasitology, Vol. 14, No. 2, 1985, pp. 141-149. doi:10.1016/0166-6851(85)90033-7

[17]   V. Colomer-Gould, L. Galvao Quintao, J. Keithly and N. Nogueira, “A Common Major Surface Antigen on Amastigotes and Promastigotes of Leishmania Species,” The Journal of Experimental Medicine, Vol. 162, No. 3, 1985, pp. 902-916. doi:10.1084/jem.162.3.902

[18]   J. Bouvier, R. Etges and C. Bordier, “Identification and Purification of Membrane and Soluble Forms of the Major Surface Protein of Leishmania Promastigotes,” The Journal of Biological Chemistry, Vol. 260, No. 29, 1985, pp. 15504-15509.

[19]   C. Bordier, R. Etges, J. Ward, M. Turner and M. Cardoso de Almeida, “Leishmania and Trypanosoma Surface Glycoproteins Have a Common Glycophospholipid Membrane Anchor,” Proceedings of the National Academy of Sciences of the USA, Vol. 83, No. 16, 1986, pp. 5988-5991. doi:10.1073/pnas.83.16.5988

[20]   R. Etges, J. Bouvier and C. Bordier, “The Major Surface Protein of Leishmania Promastigotes Is a Protease,” The Journal of Biological Chemistry, Vol. 261, No. 20, 1986, pp. 9098-9101.

[21]   A. Hernández, A. Rascón, S. Kutner, H. Roman and Z. Campos, “Relationships between Cell Surface Protease and Acid Phosphatase Activities of Leishmania Promastigote,” Molecular Biology Reports, Vol. 18, No. 3, 1993, pp. 189-195. doi:10.1007/BF01674430

[22]   C. Yonzon, D. Stuart, X. Zhang, A. McFarland, C. Haynes and R. Van Duyne, “Towards Advanced Chemical and Biological Nanosensors—An Overview,” Talanta, Vol. 67, No. 3, 2005, pp. 438-448. doi:10.1016/j.talanta.2005.06.039

[23]   M. Ortega, L. Rodriguez, J. Castillo, V. Piscitelli, A. Fernandez and L. Echevarria, “Thermo-Optical Properties of Gold Nanoparticles in Colloidal Systems,” Journal of Optics, Vol. 10, No. 10, 2008, pp. 104024-104027.

[24]   J. West, R. Drezek and N. Halas, “Nanotechnology Provides New Tools for Biomedical Optics,” In: D. E. Reisner, Ed., Biotechnology Global Prospects, CRC Press, Taylor & Francis Group, Boca Raton, 2009, pp. 261-268.

[25]   N. Sanvicens and M. Marco, “Multifunctional Nanoparticles—Properties and Prospects for Their Use in Human Medicine,” Trends in Biotechnology, Vol. 26, No. 8, 2008, pp. 425-433. doi:10.1016/j.tibtech.2008.04.005

[26]   J. Anker, N. Jeffrey, W. Paige, O. Lyandres, N. Shah, J. Zhao and R. Van Duyne, “Biosensing with Plasmonic Nanosensors,” Nature Materials, Vol. 7, 2008, pp. 442-453. doi:10.1038/nmat2162

[27]   Ch. Kaittanis, S. Santra and J. M. Perez, “Emerging Nanotechnology-Based Strategies for the Identification of Microbial Pathogenesis,” Advanced Drug Delivery Reviews, Vol. 62, No. 4-5, 2010, pp. 408-423. doi:10.1016/j.addr.2009.11.013

[28]   P. Skottrup, M. Nicolaisen and A. Justesen, “Towards On-Site Pathogen Detection Using Antibody-Based Sensors,” Biosensors and Bioelectronics, Vol. 24, No. 3, 2008, pp. 339-348. doi:10.1016/j.bios.2008.06.045

[29]   S. Nash, S. Jana, M. Pradhan and T. Pal, “Ligand-Stabilized Metal Nanoparticles in Organic Solvent,” Journal of Colloid and Interface Science, Vol. 341, No. 2, 2010, pp. 333-352. doi:10.1016/j.jcis.2009.09.049