Courant-Friedrichs' Hypothesis and Stability of the Weak Shock Wave Satisfying the Lopatinski Condition

Show more

References

[1] R. Courant and K. O. Friedrichs, “Supersonic Flow and Shock Waves,” Intersc. Publ., New York, 1948.

[2] L. V. Ovsyannikov, “Lectures on Basic Gas Dynamics,” Institute of Computer Studies, Moscow, Izhevsk, 2003.

[3] G. G. Chernyi, “Gas Dynamics,” Nauka, Moscow, 1988.

[4] A. I. Rylov, “On the Possible Modes of Flow Round Tapered Bodies of Finite Thickness at Arbitrary Supersonic Velocities of the Approach Stream,” Journal of Applied Mathematic and Mechanics, Vol. 55, No. 1,1991, pp. 78-85.doi:10.1016/0021-8928(91)90065-3

[5] A. A. Nikolski, “Plane Vorticity Gas Flows,” Teor. Issled. Mekhk. Zhidkosti i Gaza. Tr. Tsentral. Aero- i Gidrodinamich. Inst., Vol. 2122, 1984, pp. 74-85.

[6] B. L. Rozhdestvenskii, “Corrected Theory of Supersonic Flow of a Nonviscous Gas about a Wedge,” Math Modeling Comput. Experiment 1, No. 1, 1993, pp. 15-18.

[7] B. M. Bulakh, “Nonlinear Conical Flow,” Delft Univ. Press, Delft, 1985.

[8] A. M. Blokhin, D. L. Tkachev and L. O. Baldan, “Study of the Stability in the Problem on Flowing Around a Wedge. The Case of Strong Wave,” Journal of Mathematical Analysis and Applications, Vol. 319, No. 1, 2006, pp. 248-277. doi:10.1016/j.jmaa.2005.10.023

[9] A. M. Blokhin, D. L. Tkachev and Y. Y. Pashinin, “Stability Condition for Strong Shock Waves in the Problem of Flow around an Infinite Plane Wedge,” Nonlinear Analysis: Hybrid Systems, Vol. 2, 2008, pp. 1-17.
doi:10.1016/j.nahs.2006.10.012

[10] A. M. Blokhin and D. L. Tkachev, “Stability of a Supersonic Flow about a Wedge with Weak Shock Wave,” Sbornik: Mathematics, Vol. 200, No. 2, 2009, pp. 157-184.

[11] A. M. Blokhin, D. L. Tkachev and Y. Y. Pashinin, “The Strong Shock Wave in the Problem on Flow around Infinite Plane Wedge,” Proceedings of the 11th interna-tional conference on hyperbolic problems, Springer-Verlag, Berlin, 2008, pp. 1037-1044.

[12] D. L. Tkachev and A. M. Blokhin, “Courant - Friedrich's Hypothesis and Stability of the Weak Shock,” Proceedings of the 12th international conference on hyperbolic problems, Vol. 67, No. 2, 2009, pp. 958-966.

[13] R. Sakamoto, “Hyperbolic Boundary Value Problems,” Iwanami Shoten, Tokyo, 1978. PMC-id:1537516

[14] A. M. Blokhin, “Energy Integrals and their Applications to Problems of Gas Dynamics,” Nauka, Novosi-birsk, 1986.

[15] A. M. Blokhin, R. S. Bushmanov and D. L. Tkachev, “The Lopatinski Condition in the Problem of Normal Gas Flow around the Wedge,” Preprint 271, Sobolev Institute of Mathematics, Novosibirsk, 2011. PMCid:3308588