[1] J. Wang, et al., “Nuclear Electronics,” 1st Edition, Atomic Energy Press, Beijing, 1983.
[2] T. R. Andeen, “Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC,” Journal of Physics Conference Series, Vol. 404, 2012, 012061.
[3] G. M. Haller, et al., “The LiquidArgon Calorimeter system for the SLC Large Detec-tor,”IEEE Transactions on Nuclear Science, Vol. 36, No. 1, 1989, pp. 675-679. doi:10.1109/23.34525
[4] ATLAS Colla-boration, G. Aad, et al., “The ATLAS Experiment at the CERN Large Hadron Collider,” Journal of Instrumentation, Vol. 3, 2008, S08003.
[5] C. Collard, et al., “Prediction of Signal Amplitude and Shape for the ATLAS Electromagnetic Calori-meter,” ATLAS Notes, ATL-LARG-PUB-2007-010, Feb. 2008.
[6] D. Banfi, et al., “Cell Response Equalization of the ATLAS Electromagnetic Calorimeter without the Direct Knowledge of the Ionization Signals,” Journal of Instrumenta-tion, Vol. 1, Aug. 2006, P08001.
[7] ATLAS Collaboration, G. Aad, et al., “Drift Time Measurement in the ATLAS Liquid Argonelectro Magnetic Calorimeter Using Cosmic Muons,” European Physical Journal C, Vol. 70, No. 3, 2010, pp. 755-785.
[8] M. Newcomer, “LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter,” Topical Workshop on Electronics for Particle Physics, Paris, France, Sep. 21-25, 2009, pp. 132-135.
[9] H. Abreu, et al.,“Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters,”Journal of Instrumentation, Vol. 5, Sep. 2010, P09003.
[10] W. E. Cleland and E. G. Stern, “Signal Processing Considerations for Liquid Ionization Calorimeters in a High Rate Environment,” Nuclear Instruments and Methods in Physics Research A, Vol. 338, 1994, pp. 467-497. doi:10.1016/0168-9002(94)91332-3
[11] S. Starz, “Develop-ment and Implementation of Optimal Filtering in A Virtex FPGA for the Upgrade of the ATLAS LAr Calorimeter Readout,” Journal of Instrumentation, Vol. 7, 2012, C12017.