JMP  Vol.4 No.5 B , May 2013
Bulk Properties of Symmetric Nuclear and Pure Neutron Matter
ABSTRACT

We study the equation of state (EOS) of symmetric nuclear and neutron matter within the framework of the Brueckner-Hartree-Fock (BHF) approach which is extended by including a density-dependent contact interaction to achieve the empirical saturation property of symmetric nuclear matter. This method is shown to affect significantly the nuclear matter EOS and the density dependence of nuclear symmetry energy at high densities above the normal nuclear matter density, and it is necessary for reproducing the empirical saturation property of symmetric nuclear matter in a nonrelativistic microscopic framework. Realistic nucleon-nucleon interactions which reproduce the nucleon-nucleon phase shifts are used in the present calculations.


Cite this paper
K. Hassaneen and H. Mansour, "Bulk Properties of Symmetric Nuclear and Pure Neutron Matter," Journal of Modern Physics, Vol. 4 No. 5, 2013, pp. 37-41. doi: 10.4236/jmp.2013.45B008.
References
[1]   Kh. S. A. Hassaneen, H. M. Abo-Elsebaa, E. A. Sultan and H. M. M. Mansour, “Nuclear Binding Energy and Symmetry Energy of Nuclear Matter with Modern Nucleon-Nucleon Po-tentials,” Annals of Physics, Vol. 326, No. 3, 2011, pp. 566-577. doi:10.1016/j.aop.2010.11.010

[2]   D. Vautherin and D. M. Brink, “Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei,” Physical Review C, Vol. 5, No. 3, 1972, pp. 626-647. doi:10.1103/PhysRevC.5.626

[3]   J. R. Stone and P. -G. Reinhardt, “The Skyrme Interaction in Finite Nuclei and Nuclear Matter,” Progress Particle Nuclear Physics, Vol. 58, No. 2, 2007, pp. 587-657. doi:10.1016/j.ppnp.2006.07.001

[4]   D. Vretenar, A. Afanas-jev, G. A. Lalazissis and P. Ring, “Relativistic Hart-ree-Bogoliubov Theory: Static and Dynamic Aspects of Exotic Nuclear Structure,” Physics Reports, Vol. 409, No. 3-4, 2005, pp. 101-259. doi:10.1016/j.physrep.2004.10.001

[5]   R. Machleidt, “High-Precision, Charge-Dependent Bonn Nucleon-Nucleon Potential,” Physical Review C, Vol. 63, 2001, pp. 024001 (32 pages). doi:10.1103/PhysRevC.63.024001

[6]   V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart, “Construction of High-Quality NN Potential,” Physical Review C, Vol. 49, 1994, pp. 2950-2962. doi:10.1103/PhysRevC.49.2950

[7]   W. H. Dickhoff and C. Barbieri, “Self-Consistent Green’s Function Method for Nuclei and Nuclear Matter,” Progress in Particle and Nuclear Physics, Vol. 52, No. 24, pp. 377-496. doi:10.1016/j.ppnp.2004.02.038

[8]   Y. Dewulf, W. H. Dick-hoff, D. Van Neck, E. R. Stoddard and M. Waroquier, “Satura-tion of Nuclear Matter and Short-Range Correlations,” Physical Review Letters, Vol. 90, 2003, pp. 152501(4 pages). doi:10.1103/PhysRevLett.90.152501

[9]   T. Frick, K. Gad, H. Müther and P. Czerski, Nuclear Self-Energy and Realistic Inte-ractions. Physical Review C, Vol. 65, 2002, pp. 034321(13 pages). doi:10.1103/PhysRevC.65.034321

[10]   T. Frick, Kh. S. A. Hassaneen, D. Rohe and H. Müther, “Spectral Function at High Missing Energies and Momenta,” Physical Review C, Vol. 70, 2004, pp. 024309(5 pages). doi:10.1103/PhysRevC.70.024309

[11]   Kh. S. A. Hassaneen and H. Müther, “Correlations and Spectral Functions In Asymmetric Nuclear Matter,” Physical Review C, Vol. 70, 2004, pp. 054308 (5pages). doi:10.1103/PhysRevC.70.054308

[12]   Kh. Gad and Kh. S. A. Hassaneen, “Equation of State for Neutron-Rich Matter with Self-Consistent Green Function Approach,” Nuclear Physics A, Vol. 793, No. 1-4, 2007, pp. 67-78. doi:10.1016/j.nuclphysa.2007.06.015

[13]   Akmal and V. R. Pandharipande, “Spin-Isospin Structure and Pion Condensation in Nucleon Matter,” Physical Review C, Vol. 56, 1997, pp. 2261-2279. doi:10.1103/PhysRevC.56.2261

[14]   M.I. Haftel and F. Tabakin, “Nuclear Saturation and the Smoothness of Nucleon-Nucleon Potentials,” Nuclear Physics A, Vol. 158, No. 1, 1970, pp. 1-42. doi:10.1016/0375-9474(70)90047-3

[15]   C. Mahaux and R. Sartor, “Single-Particle Motion in Nuclei,” Advances in Nuclear Physics, Vol. 20, 1991, pp. 1-223. doi:10.1007/978-1-4613-9910-0_1

[16]   B. Friedman and V. R. Pandharipande, “Hot and Cold, Nuclear and Neutron Matter,” Nuclear Physics A, Vol. 361, No. 2, 1981, pp. 502-520. doi:10.1016/0375-9474(81)90649-7

[17]   M. Baldo and A. E. Shaban, “Dependence of the Nuclear Equation of State On Two-Body and Three-Body Forces,” Physical Letters B, Vol. 661, No. 5, 2008, pp. 373-377. doi:10.1016/j.physletb.2008.02.040

[18]   H. Mansour, Kh. Gad and Kh. S. A. Hassaneen, “Self-Consistent Green Function Calculations for Isospin Asymmetric Nuclear Matter. Prog,” Progress of Theoretical Physics, Vol. 123, No. 4, 2010, pp. 687-700. doi:10.1143/PTP.123.687

[19]   K. Gad and K. S. A. Hassa-neen,. “Equation of State for Neutron-Rich Matter with Self-Consistent Green Function Approach,” Nuclear Physics A, Vol. 793, No. 1-4, 2007, pp. 67-78. doi:10.1016/j.nuclphysa.2007.06.015

[20]   K. Hassaneen and K. Gad, “The Nuclear Symmetry Energy in Self-Consistent Green-Function Calculations,” Journal of The Physical Society of Japan, Vol. 77, 2008, pp. 084201-084206. doi:10.1143/JPSJ.77.084201

[21]   P. E. Haustein, “An Over-view of The 1986-1987 Atomic Mass Predictions,” Atomic Data Nuclear Data Tables, Vol. 39, No. 2,1988, pp. 185-200. doi:10.1016/0092-640X(88)90019-8

[22]   S. J. Yennello, D. V. Shetty and G. A. Souliotis, nucl-ex/ 0601006v3.

[23]   J. P. Blaizot, “Nuclear Compressibilities,” Physics Reports, Vol. 64, No. 4, 1980, pp. 171-248. doi:10.1016/0370-1573(80)90001-0

 
 
Top