JSEMAT  Vol.3 No.3 , July 2013
Epitaxial Ge Growth on Si(111) Covered with Ultrathin SiO2 Films
Abstract: The epitaxial growth of Ge on Si(111) covered with the 0.3 nm thick SiO2 film is studied by scanning tunneling microscopy. Nanoareas of bare Si in the SiO2 film are prepared by Ge deposition at a temperature in the range of 570℃-650℃ due to the formation of volatile SiO and GeO molecules. The surface morphology of Ge layers grown further at 360℃-500℃ is composed of facets and large flat areas with the Ge(111)-c(2 × 8) reconstruction which is typical of unstrained Ge. Orientations of the facets, which depend on the growth temperature, are identified. The growth at 250℃-300℃ produces continuous epitaxial Ge layers on Si(111). A comparison of the surface morphology of Ge layers grown on bare and SiO2-film covered Si(111) surfaces shows a significantly lower Ge-Si intermixing in the latter case due to a reduction in the lattice strain. The found approach to reduce the strain suggests the opportunity of the thin continuous epitaxial Ge layer formation on Si(111).
Cite this paper: Shklyaev, A. , Romanyuk, K. and Latyshev, A. (2013) Epitaxial Ge Growth on Si(111) Covered with Ultrathin SiO2 Films. Journal of Surface Engineered Materials and Advanced Technology, 3, 195-204. doi: 10.4236/jsemat.2013.33027.

[1]   K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert and W. Stolz, “GaP-Nucleation on Exact Si(001) Substrates for III/V Device Integration,” Journal of Crystal Growth, Vol. 315, No. 1, 2011, pp. 37-47. doi:10.1016/j.jcrysgro.2010.10.036

[2]   S. G. Ghalamestani, M. Berg, K. A. Dick and L.-E. Wernersson, “High Quality InAs and GaSb Thin Layers Grown on Si(111),” Journal of Crystal Growth, Vol. 332, No. 1, 2011, pp. 12-16. doi:10.1016/j.jcrysgro.2011.03.062

[3]   Yu. B. Bolkhovityanov and O. P. Pchelyakov, “GaAs Epitaxy on Si Substrates: Modern Status of Research and Engineering,” Physics-Uspekhi, Vol. 51, No. 5, 2008, pp. 437-456. doi:10.1070/PU2008v051n05ABEH006529

[4]   J. G. Cederberg, D. Leonhardt, J. J. Sheng, Q. Li, M. S. Carroll and S. M. Han, “GaAs/Si Epitaxial Integration Utilizing a Two-Step, Selectively Grown Ge Intermediate Layer,” Journal of Crystal Growth, Vol. 312, No. 8, 2010, pp. 1291-1296. doi:10.1016/j.jcrysgro.2009.10.061

[5]   V. Destefanis, J.M. Hartmann, A. Abbadie, A. M. Papon and T. Billon, “Growth and Structural Properties of SiGe Virtual Substrates on Si(100), (110) and (111),” Journal of Crystal Growth, Vol. 311, No. 4, 2009, pp. 1070-1079. doi:10.1016/j.jcrysgro.2008.12.034

[6]   P. M. J. Maré, K. Nakagawa, F. M. Mulders, J. F. Van der Veen and K. L. Kavanagh, “Thin Epitaxial Ge-Si(111) Films: Study and Control of Morphology,” Surface Science, Vol. 191, No. 3, 1987, pp. 305-328. doi:10.1016/S0039-6028(87)81180-9

[7]   U. Köhler, O. Jusko, G. Pietsch, B. Müller and M. Henzler, “Strained-Layer Growth and Islanding of Germanium on Si (111)-(7 × 7) Studied with STM,” Surface Science, Vol. 248, No. 3, 1991, pp. 321-331. doi:10.1016/0039-6028(91)91178-Z

[8]   A. A. Shklyaev, M. Shibata and M. Ichikawa, “Instability of Two-Dimensional Layers in the Stranski-Krastanov Growth Mode of Ge on Si(111),” Physical Review B, Vol. 58, No. 23, 1998, pp. 15647-15651. doi:10.1103/PhysRevB.58.15647

[9]   B. Voigtländer and A. Zinner, “Simultaneous Molecular Beam Epitaxy Growth and Scanning Tunneling Microscopy Imaging during Ge/Si Epitaxy,” Applied Physics Letters, Vol. 63, No. 2, 1993, pp. 3055-3057. doi:10.1063/1.110256

[10]   A. A. Shklyaev, M. Shibata and M. Ichikawa, “Ge Islands on Si(111) at Coverages near the Transition from Two-Dimensional to Three-Dimensional Growth,” Surface Science, Vol. 416, No. 1, 1998, pp. 192-199. doi:10.1016/S0039-6028(98)00580-9

[11]   S. Y. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen and A. N. Larsen, “Nanoscale Structuring by Misfit Dislocations in Si1-xGex/Si Epitaxial Systems,” Physical Review Letters, Vol. 78, No. 3, 1997, pp. 503-506. doi:10.1103/PhysRevLett.78.503

[12]   B. Voigtländer and N. Theuerkauf, “Ordered Growth of Ge Islands above a Misfit Dislocation Network in a Ge Layer on Si(111),” Surface Science, Vol. 461, No. 1-3, 2000, pp. L575-L580. doi:10.1016/S0039-6028(00)00620-8

[13]   S. A. Teys, “Features of Atomic Processes at the Formation of a Wetting Layer and Nucleation of Three-Dimensional Ge Islands on Si(111) and Si(100) Surfaces,” JETP Letters, Vol. 96, No. 12, 2013, pp. 794-802. doi:10.1134/S0021364012240113

[14]   R. Gunnella, P. Castrucci, N. Pinto, I. Diavoli, D. Sébilleau and M. De Crescenzi, “X-Ray Photoelectron-Diffraction Study of Intermixing and Morphology at the Ge/ Si(001) and Ge/Sb/Si(001) Interface,” Physical Review B, Vol. 54, No. 12, 1996, pp. 8882-8891. doi:10.1103/PhysRevB.54.8882

[15]   X. R. Qin, B. S. Swartzentruber and M. G. Lagally, “Scanning Tunneling Microscopy Identification of Atomic-Scale Intermixing on Si(100) at Submonolayer Ge Coverages,” Physical Review Letters, Vol. 85, No. 17, 2000, pp. 3660-3663. doi:10.1103/PhysRevLett.85.3660

[16]   F. Ratto, F. Rosei, A. Locatelli, S. Cherifi, S. Fontana, S. Heun, P.-D. Szkutnik, A. Sgarlata, M. De Crescenzi and N. Motta, “Composition of Ge(Si) Islands in the Growth of Ge on Si(111) by x-Ray Spectromicroscopy,” Journal of Applied Physics, Vol. 97, No. 4, 2005, pp. 043516-1-043516-8. doi:10.1063/1.1832747

[17]   T. I. Kamins, E. C. Carr, R. S. Williams and S. J. Rosner, “Deposition of Three-Dimensional Ge Islands on Si(001) by Chemical Vapor Deposition at Atmospheric and Reduced Pressures,” Journal of Applied Physics, Vol. 81, No. 1, 1997, pp. 211-219. doi:10.1063/1.364084

[18]   F. Boscherini, G. Capellini, L. Di Gaspare, M. De Seta, F. Rosei, A. Sgarlata, N. Motta and S. Mobilio, “Ge-Si Intermixing in Ge Quantum Dots on Si,” Thin Solid Films, Vol. 380, No. 1-2, 2000, pp. 173-175. doi:10.1016/S0040-6090(00)01496-6

[19]   M. Valvo, C. Bongiorno, F. Giannazzo and A. Terrasi, “Localized Si Enrichment in Coherent Self-Assembled Ge Islands Grown by Molecular Beam Epitaxy on (001) Si Single Crystal,” Journal of Applied Physics, Vol. 113, No. 3, 2013, pp. 033513-1-033513-17. doi:10.1063/1.4775772

[20]   Y. Nakamura, A. Murayama and M. Ichikawa, “Epitaxial Growth of High Quality Ge Films on Si(001) Substrates by Nanocontact Epitaxy,” Crystal Growth & Design, Vol. 11, No. 7, 2011, pp. 3301-3305. doi:10.1021/cg200609u

[21]   Y. Nakamura, T. Miwa and M. Ichikawa, “Nanocontact Heteroepitaxy of thin GaSb and AlGaSb Films on Si Substrates Using Ultrahigh-Density Nanodot Seeds,” Nanotechnology, Vol. 22, No. 26, 2011, pp. 265301-1-265301-7. doi:10.1088/0957-4484/22/26/265301

[22]   A. A. Shklyaev, M. Shibata and M. Ichikawa, “High-Density Ultrasmall Epitaxial Ge Islands on Si(111) Surfaces with a SiO2 Coverage,” Physical Review B, Vol. 62, No. 3, 2000, pp. 1540-1543. doi:10.1103/PhysRevB.62.1540

[23]   A. A. Shklyaev and M. Ichikawa, “Extremely Dense Arrays of Germanium and Silicon Nanostructures,” Physics-Uspekhi, Vol. 51, No. 2, 2008, pp. 133-161. doi:10.1070/PU2008v051n02ABEH006344

[24]   S. Ghosh, D. Leonhardt and S. M. Han, “Experimental and Theoretical Investigation of Thermal Stress Relief during Epitaxial Growth of Ge on Si Using Air-Gapped SiO2 Nanotemplates,” Applied Physics Letters, Vol. 99, No. 18, 2011, pp. 181911-1-181911-3. doi:10.1063/1.3659320

[25]   V. Kuryliuk, O. Korotchenkov and A. Cantarero, “Carrier Confinement in Ge/Si Quantum Dots Grown with an Intermediate Ultrathin Oxide Layer,” Physical Review B, Vol. 85, No. 7, 2012, pp. 075406-1-075406-11. doi:10.1103/PhysRevB.85.075406

[26]   N. Miyata, H. Watanabe and M. Ichikawa, “Thermal Decomposition of an Ultrathin Si Oxide Layer around a Si(001)-(2 × 1) Window,” Physical Review Letters, Vol. 84, No. 5, 2000, pp. 1043-1046. doi:10.1103/PhysRevLett.84.1043

[27]   A. A. Shklyaev, M. Aono and T. Suzuki, “Influence of Growth Conditions on Subsequent Submonolayer Oxide Decomposition on Si(111),” Physical Review B, Vol. 54, No. 15, 1996, 10890-10895. doi:10.1103/PhysRevB.54.10890

[28]   A. A. Shklyaev and S. M. Repinsky, “Investigation of Ge Surface Self-Diffusion by Determination of Changes in the Reflection Intensity Profiles of Low-Energy Electron Diffraction,” Soviet Physics Semiconductors, Vol. 14, No. 7, 1980, pp. 767-772.

[29]   B. Voigtländer, “Fundamental Processes in Si/Si and Ge/ Si Epitaxy Studied by Scanning Tunneling Microscopy during Growth,” Surface Science Reports, Vol. 43, No. 5-8, 2001, pp. 127-254. doi:10.1016/S0167-5729(01)00012-7

[30]   N. Motta, A. Sgarlata, R. Calarco, Q. Nguyen, J. Castro Cal, F. Patella, A. Balzarotti and M. De Crescenzi, “Growth of Ge-Si(111) Epitaxial Layers: Intermixing, Strain Relaxation and Island Formation,” Surface Science, Vol. 406, No. 1-3, 1998, pp. 254-263. doi:10.1016/S0039-6028(98)00121-6

[31]   M. Stoffel, Y. Fagot-Révurat, A. Tejeda, B. Kierren, A. Nicolaou, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi and D. Malterre, “Electron-phonon Coupling on Strained Ge/Si(111)-(5 × 5) Surfaces,” Physical Review B, Vol. 86, No. 19, 2012, pp. 195438-1-195438-7. doi:10.1103/PhysRevB.86.195438

[32]   H. -J. Gossmann, J. C. Bean, L. C. Feldman, E. G. McRae and I. K. Robinson, “7 × 7 Reconstruction of Ge(111) Surfaces under Compressive Strain,” Physical Review Letters, Vol. 55, No. 10, 1985, pp. 1106-1109. doi:10.1103/PhysRevLett.55.1106

[33]   U. Köhler, O. Jusko, G. Pietsch, B. Müller and M. Henzler, “Strained-Layer Growth and Islanding of Germanium on Si(111)-(7 × 7) Studied with STM,” Surface Science, Vol. 248, No. 3, 1991, pp. 321-331. doi:10.1016/0039-6028(91)91178-Z

[34]   K. N. Romanyuk, A. A. Shklyaev, B. Z. Olshanetsky and A. V. Latyshev, “Formation of Ge Clusters at a Si(111)-Bi-√3 × √3 Surface,” JETP Letters, Vol. 93, No. 11, 2011, pp. 661-666. doi:10.1134/S0021364011110105

[35]   G. Vastola, V. B. Shenoy, J. Guo and Y.-W. Zhang, “Coupled Evolution of Composition and Morphology in a Faceted Three-Dimensional Quantum Dot,” Physical Review B, Vol. 84, No. 3, 2011, pp. 035432-1-035432-7. doi:10.1103/PhysRevB.84.035432

[36]   A. Laracuente, S. C. Erwin and L. J. Whitman, “Structure of Ge(113): Origin and Stability of Surface Self-Interstitials,” Physical Review Letters, Vol. 81, No. 23, 1998, pp. 5177-5180. doi:10.1103/PhysRevLett.81.5177

[37]   Z. Gai, R. G. Zhao, X. Li and W. S. Yang, “Faceting and Nanoscale Faceting of Ge(hhl) Surfaces around (113),” Physical Review B, Vol. 58, No. 8, 1998, pp. 4572-4578. doi:10.1103/PhysRevB.58.4572

[38]   A. A. Stekolnikov and F. Bechstedt, “Shape of Free and Constrained Group-IV Crystallites: Influence of Surface Energies,” Physical Review B, Vol. 72, No. 12, 2005, p. 125326. doi:10.1103/PhysRevB.72.125326

[39]   J. T. Robinson, A. Rastelli, O. Schmidt and O. D. Dubon, “Global Faceting Behavior of Strained Ge Islands on Si,” Nanotechnology, Vol. 20, No. 8, 2009, Article ID: 085708. doi:10.1088/0957-4484/20/8/085708

[40]   A. A. Shklyaev, K. N. Romanyuk, A. V. Latyshev and A. V. Arzhannikov, “Effect of Dislocations on the Shape of Islands during Silicon Growth on the Oxidized Si(111) Surface,” JETP Letters, Vol. 93, No. 6, 2011, pp. 442-445. doi:10.1134/S0021364011180147

[41]   Z. Gai, R. G. Zhao, W. Li, Y. Fujikawa, T. Sakurai and W. S. Yang, “Major Stable Surface of Silicon: Si(20 4 23),” Physical Review B, Vol. 64, No. 12, 2001, Article ID: 125201. doi:10.1103/PhysRevB.64.125201

[42]   M. Henzler, “Correlation between Surface Structure and Surface States at the Clean Germanium (111) Surface,” Journal of Applied Physics, Vol. 40, No. 9, 1969, pp. 3758-3765. doi:10.1063/1.1658268

[43]   B. Z. Olshanetsky, S. M. Repinsky and A. A. Shklyaev, “LEED Investigation of Germanium Surfaces Cleaned by Sulphide Films, Structural Transitions on Clean Ge(110) Surfaces,” Surface Science, Vol. 64, No. 1, 1977, pp. 224-236. doi:10.1016/0039-6028(77)90268-0

[44]   M. Kuzmin, M. J. P. Punkkinen, P. Laukkanen, J. J. K. Lang, J. Dahl, V. Tuominen, M. Tuominen, R. E. Perälä, T. Balasubramanian, J. Adell, B. Johansson, L. Vitos, K. Kokko and I. J. Väyrynen, “Surface Core-Level Shifts on Ge (111)-c(2 × 8): Experiment and Theory,” Physical Review B, Vol. 83, No. 24, 2011, p. 245319. doi:10.1103/PhysRevB.83.245319

[45]   M. Henzler, “The Roughness of Cleaved Semiconductor Surfaces,” Surface Science, Vol. 36, No. 1, 1973, pp. 109-122. doi:10.1016/0039-6028(73)90249-5

[46]   B. Z. Olshanetsky, S. M. Repinsky and A. A. Shklyaev, “LEED Studies of Vicinal Surfaces of Germanium,” Surface Science, Vol. 69, No. 1, 1977, pp. 205-217. doi:10.1016/0039-6028(77)90169-8

[47]   A. A. Shklyaev and M. Ichikawa, “Effect of Interfaces on Quantum Confinement in Ge Dots Grown on Si Surfaces with a SiO2 Coverage,” Surface Science, Vol. 514, No. 1-3, 2002, pp. 19-26. doi:10.1016/S0039-6028(02)01602-3

[48]   M. Copel, M. C. Reuter, M. Horn von Hoegen and R. M. Tromp, “Influence of Surfactants in Ge and Si Epitaxy on Si (001),” Physical Review B, Vol. 42, No. 18, 1990, pp. 11682-11689. doi:10.1103/PhysRevB.42.11682

[49]   B. Voigtlander, A. Zinner, T. Weber and H. P. Bonzel, “Modification of Growth Kinetics in Surfactant-Mediated Epitaxy,” Physical Review B, Vol. 51, No. 12, 1995, pp. 7583-7591. doi:10.1103/PhysRevB.51.7583

[50]   D. Kandel and E. Kaxiras, “Surfactant Mediated Crystal Growth of Semiconductors,” Physical Review Letters, Vol. 75, No. 14, 1995, pp. 2742-2745. doi:10.1103/PhysRevLett.75.2742