Back
 JSEMAT  Vol.3 No.3 , July 2013
Improved Photovoltaic Properties of Heterojunction Carbon Based Solar Cell
Abstract: Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for photovoltaic solar cells. Argon, acetylene and trimethylboron were used as a carrier, source and dopant gases. Analytical methods such as X-ray photoelectron spectroscopy (XPS), Hall Effect measurement, JASCO V-570 UV/VIS/NIR spectroscopy, Raman spectroscopy, Transmission electron microscopy (TEM) and Solar simulator were employed to investigate chemical, optical, structural and electrical properties of the a-C films. Two types of solar cells of configuration p-C/n-Si and p-C/i-C/n-Si have been fabricated and their current-voltage characteristics under dark and illumination (AM 1.5, 100 mW/cm2) have been studied. The two solar cells showed rectifying curves under the dark condition confirming the heterojunction carbon based solar cell between p-C and n-Si. When illuminated by the solar simulator light the devices showed photovoltaic behavior. The heterojunction device (p-C/i-C/n-Si) having inserted intrinsic carbon film between p-C and n-Si exhibited significant enhancement of the conversation efficiency (0.167% to 2.349%) over the device (p-C/n-Si).
Cite this paper: Adhikari, S. , Kayastha, M. , Ghimire, D. , Aryal, H. , Adhikary, S. , Takeuchi, T. , Murakami, K. , Kawashimo, Y. , Uchida, H. , Wakita, K. and Umeno, M. (2013) Improved Photovoltaic Properties of Heterojunction Carbon Based Solar Cell. Journal of Surface Engineered Materials and Advanced Technology, 3, 178-183. doi: 10.4236/jsemat.2013.33024.
References

[1]   M. Krishna, T. Soga, T. Jimbo and M. Umeno, “A Phosphorus Doped (n-Type) Carbon/Boron Doped (p-Type) Silicon Photovoltaic Solar Cell from a Natural Source,” Carbon, Vol. 37, No. 3, 1999, pp. 531-533. doi:10.1016/S0008-6223(99)00019-6

[2]   M. Umeno and S. Adhikary, “Diamond-Like Carbon Thin Films by Microwave Surface-Wave Plasma CVD Aimed for the Application of Photovoltaic Solar Cells,” Diamond and Related Materials, Vol. 14, No. 11-12, 2005, pp. 1973-1979. doi:10.1016/j.diamond.2005.09.030

[3]   M. Krishna, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno, “Solar Cells Based on Carbon Thin Films,” Solar Energy Materials and Solar Cells, Vol. 65, No. 1-4, 2001, pp. 163-170. doi:10.1016/S0927-0248(00)00091-X

[4]   X. Wang, H. R. Harris, K. Bouldin, H. Temkin, S. Gangopadhyay, M. D. Strathman and M. West, “Structural Properties of Fluorinated Amorphous Carbon Films,” Journal of Applied Physics, Vol. 87, No. 1, 2000, pp. 621-623. doi:10.1063/1.371910

[5]   H. Kiyota, K. Okano, T. Iwasaki, H. Izumiya, Y. Akiba, T. Kurosu and M. Iida, “Fabrication of Metal-Insulator-Semiconductor Devices Using Polycrystalline Diamond Film,” Japanese Journal of Applied Physics, Vol. 30, No. 12A, 1991, pp. 2015-2017. doi:10.1143/JJAP.30.L2015

[6]   J. W. Glesener, A. A. Morrish and K. A. Snail, “A Thin-Film Schottky Diode Fabricated from Flame-Grown Diamond,” Japanese Journal of Applied Physics, Vol. 70, No. 9, 1991, pp. 5144-5146. doi:10.1063/1.348992

[7]   S. M. Mominuzzaman, K. M. Krishna, T. Soga, T. Jimbo and M. Umeno, “Raman Spectra of Ion Beam Sputtered Amorphous Carbon Thin Films Deposited from Camphoric Carbon,” Carbon, Vol. 38, No. 1, 2000, pp. 127-131. doi:10.1016/S0008-6223(99)00107-4

[8]   T. Soga, T. Jimbo, K. M. Krishna and M. Umeno, “Amorphous Carbon Thin Films for Optoelectric Device Application,” International Journal of Modern Physics B, Vol. 14, No. 2-3, 2000, pp. 206-217. doi:10.1142/S0217979200000200

[9]   H. G. Chun, J. H. Lee, Y. Z. You, Y. D. Ko, T. Y. Cho, K. V. Oskomov, N. S. Sochugov and A. N. Zakharov, “Pulsed Magnetron Sputtering Deposition of DLC Films. Part II: High-Voltage Bias-Assisted Deposition,” Journal of Korean Institute of Surface Engineering, Vol. 36, No. 2, 2003, pp. 148-154.

[10]   D. T. Peeler and P. T. Murray, “Dynamics of Amorphous Carbon Film Growth by Pulsed Laser Deposition: Kinetic Energy of the Incident Particles,” Diamond and Related Materials, Vol. 3, No. 8, 1994, pp. 1124-1127. doi:10.1016/0925-9635(94)90105-8

[11]   F. Y. Chuang, C. Y. Sun, T. T. Chen and I. N. Lin, “Local Electron Field Emission Characteristics of Pulsed Laser Deposited Diamond Like Carbon Films,” Applied Physics Letters, Vol. 69, No. 23, 1996, p. 3504. doi:10.1063/1.117226

[12]   Rusli, G. A. J. Amaratunga and S. R. P. Silva, “Photoluminescence in Amorphous Carbon Thin Films and Its Relation to the Microscopic Properties,” Thin Solid Films, Vol. 270, No. 1-2, 1995, pp. 160-164. doi:10.1016/0040-6090(95)06911-9

[13]   J. Robertson, “Deposition Mechanism of a-C and a-C:H,” Journal of Non-Crystalline Solids, Vol. 164-166, Pt. 2, 1993, pp. 1115-1118.

[14]   M. Matsuoka and K. Ono, “Low-Energy Ion Extraction with Small Dispersion from an Electron Cyclotron Resonance Microwave Plasma Stream,” Applied Physics Letters, Vol. 50, No. 26, 1987, p. 1864. doi:10.1063/1.97719

[15]   Y. Inoue, T. Komoguchi, H. Nakata and O. Takai, “Synthesis of Sn-doped a-C:H Films by RF Plasma-Enhanced Chemical Vapor Deposition and Their Characterization,” Thin Solid Films, Vol. 322, No. 1-2, 1998, pp. 41-45. doi:10.1016/S0040-6090(97)00937-1

[16]   Y. Hayashi, G. Yu, M. M. Rahaman, K. M. krishna, T. Soga, T. Jimbo and M. Umeno, “Spectroscopic Properties of Nitrogen Doped Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition,” Journal of Applied Physics Vol. 89, No. 12, 2001, pp. 7924-7931. doi:10.1063/1.1371268

[17]   K. M. Krishna, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno, Technical Digest PVSEC-11, Hokkaido, 1999, p. 309.

[18]   X. M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo and M. Umeno, “A Photovoltaic Cell from p-Type Boron-Doped Amorphous Carbon Film,” Solar Energy Materials and Solar Cells, Vol. 77, No. 1, 2003, pp. 105-112. doi:10.1016/S0927-0248(02)00461-0

[19]   M. Rusop, S. M. Mominuzzaman, T. Soga and T. Jimbo, “Photovoltaic Properties of n-C:P/p-Si Cells Deposited by XeCl Eximer Laser Using Graphite Target,” Solar Energy Materials and Solar Cells, Vol. 90, No. 18-19, 2006, pp. 3205-3213. doi:10.1016/j.solmat.2006.06.018

[20]   X. M. Tian, T. Soga, T. Jimbo and M. Umeno, “The a-C:H/p-Si Solar Cell Deposited by Pulse Laser Deposition,” Journal of Non-Crystalline Solids, Vol. 336, No. 1, 2004, pp. 32-36. doi:10.1016/j.jnoncrysol.2003.12.045

[21]   D. R. McKenzie, “Tetrahedral Bonding in Amorphous Carbon,” Reports on Progress in Physics, Vol. 59, 1996, p. 1611. doi:10.1088/0034-4885/59/12/002

[22]   Z. Q. Ma and B. X. Liu, “Boron-Doped Diamond-Like Amorphous Carbon as Photovoltaic Films in Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 69, No. 4, 2001, pp. 339-344. doi:10.1016/S0927-0248(00)00400-1

[23]   V. S. Veerasamy, G. A. J. Amaratunga, C. A. Davis, A. E. Timbs, W. I. Milne and D. R. McKenzie, “n-Type Doping of Highly Tetrahedral Diamond-Like Amorphous Carbon,” Journal of Physics: Condensed Matter, Vol. 5, No. 13, 1993, pp. L169-L174. doi:10.1088/0953-8984/5/13/004

[24]   K. Kadas, G. G. Ferenczy and S. Kugler, “Theory of Dopant Pairs in Four-Fold Coordinated Amorphous Semiconductors,” Journal of Non-Crystalline Solids, Vol. 227, Pt. 1, 1998, pp. 367-371. doi:10.1016/S0022-3093(98)00228-2

[25]   M. T. Kuo, P. W. May, A. Gunn, M. N. R. Ashfold and R. K. Wild, “Studies of Phosphorus Doped Diamond-Like Carbon Films,” Diamond and Related Materials, Vol. 9, No. 3-6, 2000, pp. 1222-1227. doi:10.1016/S0925-9635(99)00305-2

[26]   M. Nagatsu, T. Sano, N. Takada, N. Toyoda, M. Tanga and H. Sugai, “Characteristics of Hydrogenated Amorphous Carbon Films Deposited by Large-Area Microwave-Sustained Surface Wave Plasma,” Diamond and Related Materials, Vol. 11, No. 3-6, 2002, pp. 976-979. doi:10.1016/S0925-9635(01)00616-1

[27]   S. Adhikari, S. Adhikary, A. M. M. Omer, M. Rusop, H. Uchida, T. Soga and M. Umeno, “Optical and Structural Properties of Amorphous Carbon Thin Films Deposited by Microwave Surface-Wave Plasma CVD,” Diamond and Related Materials, Vol. 15, No. 2-3, 2006, pp. 188-192. doi:10.1016/j.diamond.2005.08.069

[28]   S. Adhikari, D. C. Ghimire, H. R. Aryal, S. Adhikary, H. Uchida and M. Umeno,” Boron-Doped Hydrogenated Amorphous Carbon Films Grown by Surface-Wave Mode Microwave Plasma Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 15, No. 11-12, 2006, pp. 1909-1912. doi:10.1016/j.diamond.2006.07.022

[29]   J. Tauc, “Amorphous and Liquid Semiconductors,” Plenum Press, London, New York, 1974, Chapter 4. doi:10.1007/978-1-4615-8705-7

[30]   G. E. Bacon, “The Interlayer Spacing of Graphite,” Acta Crystallographica, Vol. 4, Pt. 6, 1951, pp. 558-562. doi:10.1107/S0365110X51001781

[31]   D. S. Knight and W. B. White, “Characterization of Diamond Films by Raman Spectroscopy,” Journal of Materials Research, Vol. 4, No. 2, 1989, pp. 385-393. doi:10.1557/JMR.1989.0385

[32]   S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini and G. Mariotto, “Nitrogen Modification of Hydrogenated Amorphous Carbon Films,” Journal of Applied Physics, Vol. 81, No. 6, 1997, p. 2626. doi:10.1063/1.363927

[33]   M. A. Tamor and W. C. Vassell, “Raman ‘Fingerprinting’ of Amorphous Carbon Films,” Journal of Applied Physics, Vol. 76, No. 6, 1994, p. 3823. doi:10.1063/1.357385

[34]   R. O. Dillon, J. A. Woollam and V. Katkanant, “Use of Raman Scattering to Investigate Disorder and Crystallite Formation in As-Deposited and Annealed Carbon Films,” Physical Review B, Vol. 29, No. 6, 1984, pp. 3482-3489. doi:10.1103/PhysRevB.29.3482

[35]   H. A. Yu, T. Kaneko, S. Yoshimura and Y. Suhng, “The Spectro-Photovoltaic Characteristics of a Carbonaceous Film/n-Type Silicon (C/n-Si) Photovoltaic Cell,” Applied Physics Letters, Vol. 69, No. 26, 1996, pp. 4078-4080. doi:10.1063/1.117824

 
 
Top