JSEMAT  Vol.3 No.3 , July 2013
Improved Photovoltaic Properties of Heterojunction Carbon Based Solar Cell
ABSTRACT

Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for photovoltaic solar cells. Argon, acetylene and trimethylboron were used as a carrier, source and dopant gases. Analytical methods such as X-ray photoelectron spectroscopy (XPS), Hall Effect measurement, JASCO V-570 UV/VIS/NIR spectroscopy, Raman spectroscopy, Transmission electron microscopy (TEM) and Solar simulator were employed to investigate chemical, optical, structural and electrical properties of the a-C films. Two types of solar cells of configuration p-C/n-Si and p-C/i-C/n-Si have been fabricated and their current-voltage characteristics under dark and illumination (AM 1.5, 100 mW/cm2) have been studied. The two solar cells showed rectifying curves under the dark condition confirming the heterojunction carbon based solar cell between p-C and n-Si. When illuminated by the solar simulator light the devices showed photovoltaic behavior. The heterojunction device (p-C/i-C/n-Si) having inserted intrinsic carbon film between p-C and n-Si exhibited significant enhancement of the conversation efficiency (0.167% to 2.349%) over the device (p-C/n-Si).


Cite this paper
S. Adhikari, M. Kayastha, D. Ghimire, H. Aryal, S. Adhikary, T. Takeuchi, K. Murakami, Y. Kawashimo, H. Uchida, K. Wakita and M. Umeno, "Improved Photovoltaic Properties of Heterojunction Carbon Based Solar Cell," Journal of Surface Engineered Materials and Advanced Technology, Vol. 3 No. 3, 2013, pp. 178-183. doi: 10.4236/jsemat.2013.33024.
References
[1]   M. Krishna, T. Soga, T. Jimbo and M. Umeno, “A Phosphorus Doped (n-Type) Carbon/Boron Doped (p-Type) Silicon Photovoltaic Solar Cell from a Natural Source,” Carbon, Vol. 37, No. 3, 1999, pp. 531-533. doi:10.1016/S0008-6223(99)00019-6

[2]   M. Umeno and S. Adhikary, “Diamond-Like Carbon Thin Films by Microwave Surface-Wave Plasma CVD Aimed for the Application of Photovoltaic Solar Cells,” Diamond and Related Materials, Vol. 14, No. 11-12, 2005, pp. 1973-1979. doi:10.1016/j.diamond.2005.09.030

[3]   M. Krishna, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno, “Solar Cells Based on Carbon Thin Films,” Solar Energy Materials and Solar Cells, Vol. 65, No. 1-4, 2001, pp. 163-170. doi:10.1016/S0927-0248(00)00091-X

[4]   X. Wang, H. R. Harris, K. Bouldin, H. Temkin, S. Gangopadhyay, M. D. Strathman and M. West, “Structural Properties of Fluorinated Amorphous Carbon Films,” Journal of Applied Physics, Vol. 87, No. 1, 2000, pp. 621-623. doi:10.1063/1.371910

[5]   H. Kiyota, K. Okano, T. Iwasaki, H. Izumiya, Y. Akiba, T. Kurosu and M. Iida, “Fabrication of Metal-Insulator-Semiconductor Devices Using Polycrystalline Diamond Film,” Japanese Journal of Applied Physics, Vol. 30, No. 12A, 1991, pp. 2015-2017. doi:10.1143/JJAP.30.L2015

[6]   J. W. Glesener, A. A. Morrish and K. A. Snail, “A Thin-Film Schottky Diode Fabricated from Flame-Grown Diamond,” Japanese Journal of Applied Physics, Vol. 70, No. 9, 1991, pp. 5144-5146. doi:10.1063/1.348992

[7]   S. M. Mominuzzaman, K. M. Krishna, T. Soga, T. Jimbo and M. Umeno, “Raman Spectra of Ion Beam Sputtered Amorphous Carbon Thin Films Deposited from Camphoric Carbon,” Carbon, Vol. 38, No. 1, 2000, pp. 127-131. doi:10.1016/S0008-6223(99)00107-4

[8]   T. Soga, T. Jimbo, K. M. Krishna and M. Umeno, “Amorphous Carbon Thin Films for Optoelectric Device Application,” International Journal of Modern Physics B, Vol. 14, No. 2-3, 2000, pp. 206-217. doi:10.1142/S0217979200000200

[9]   H. G. Chun, J. H. Lee, Y. Z. You, Y. D. Ko, T. Y. Cho, K. V. Oskomov, N. S. Sochugov and A. N. Zakharov, “Pulsed Magnetron Sputtering Deposition of DLC Films. Part II: High-Voltage Bias-Assisted Deposition,” Journal of Korean Institute of Surface Engineering, Vol. 36, No. 2, 2003, pp. 148-154.

[10]   D. T. Peeler and P. T. Murray, “Dynamics of Amorphous Carbon Film Growth by Pulsed Laser Deposition: Kinetic Energy of the Incident Particles,” Diamond and Related Materials, Vol. 3, No. 8, 1994, pp. 1124-1127. doi:10.1016/0925-9635(94)90105-8

[11]   F. Y. Chuang, C. Y. Sun, T. T. Chen and I. N. Lin, “Local Electron Field Emission Characteristics of Pulsed Laser Deposited Diamond Like Carbon Films,” Applied Physics Letters, Vol. 69, No. 23, 1996, p. 3504. doi:10.1063/1.117226

[12]   Rusli, G. A. J. Amaratunga and S. R. P. Silva, “Photoluminescence in Amorphous Carbon Thin Films and Its Relation to the Microscopic Properties,” Thin Solid Films, Vol. 270, No. 1-2, 1995, pp. 160-164. doi:10.1016/0040-6090(95)06911-9

[13]   J. Robertson, “Deposition Mechanism of a-C and a-C:H,” Journal of Non-Crystalline Solids, Vol. 164-166, Pt. 2, 1993, pp. 1115-1118.

[14]   M. Matsuoka and K. Ono, “Low-Energy Ion Extraction with Small Dispersion from an Electron Cyclotron Resonance Microwave Plasma Stream,” Applied Physics Letters, Vol. 50, No. 26, 1987, p. 1864. doi:10.1063/1.97719

[15]   Y. Inoue, T. Komoguchi, H. Nakata and O. Takai, “Synthesis of Sn-doped a-C:H Films by RF Plasma-Enhanced Chemical Vapor Deposition and Their Characterization,” Thin Solid Films, Vol. 322, No. 1-2, 1998, pp. 41-45. doi:10.1016/S0040-6090(97)00937-1

[16]   Y. Hayashi, G. Yu, M. M. Rahaman, K. M. krishna, T. Soga, T. Jimbo and M. Umeno, “Spectroscopic Properties of Nitrogen Doped Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition,” Journal of Applied Physics Vol. 89, No. 12, 2001, pp. 7924-7931. doi:10.1063/1.1371268

[17]   K. M. Krishna, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno, Technical Digest PVSEC-11, Hokkaido, 1999, p. 309.

[18]   X. M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo and M. Umeno, “A Photovoltaic Cell from p-Type Boron-Doped Amorphous Carbon Film,” Solar Energy Materials and Solar Cells, Vol. 77, No. 1, 2003, pp. 105-112. doi:10.1016/S0927-0248(02)00461-0

[19]   M. Rusop, S. M. Mominuzzaman, T. Soga and T. Jimbo, “Photovoltaic Properties of n-C:P/p-Si Cells Deposited by XeCl Eximer Laser Using Graphite Target,” Solar Energy Materials and Solar Cells, Vol. 90, No. 18-19, 2006, pp. 3205-3213. doi:10.1016/j.solmat.2006.06.018

[20]   X. M. Tian, T. Soga, T. Jimbo and M. Umeno, “The a-C:H/p-Si Solar Cell Deposited by Pulse Laser Deposition,” Journal of Non-Crystalline Solids, Vol. 336, No. 1, 2004, pp. 32-36. doi:10.1016/j.jnoncrysol.2003.12.045

[21]   D. R. McKenzie, “Tetrahedral Bonding in Amorphous Carbon,” Reports on Progress in Physics, Vol. 59, 1996, p. 1611. doi:10.1088/0034-4885/59/12/002

[22]   Z. Q. Ma and B. X. Liu, “Boron-Doped Diamond-Like Amorphous Carbon as Photovoltaic Films in Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 69, No. 4, 2001, pp. 339-344. doi:10.1016/S0927-0248(00)00400-1

[23]   V. S. Veerasamy, G. A. J. Amaratunga, C. A. Davis, A. E. Timbs, W. I. Milne and D. R. McKenzie, “n-Type Doping of Highly Tetrahedral Diamond-Like Amorphous Carbon,” Journal of Physics: Condensed Matter, Vol. 5, No. 13, 1993, pp. L169-L174. doi:10.1088/0953-8984/5/13/004

[24]   K. Kadas, G. G. Ferenczy and S. Kugler, “Theory of Dopant Pairs in Four-Fold Coordinated Amorphous Semiconductors,” Journal of Non-Crystalline Solids, Vol. 227, Pt. 1, 1998, pp. 367-371. doi:10.1016/S0022-3093(98)00228-2

[25]   M. T. Kuo, P. W. May, A. Gunn, M. N. R. Ashfold and R. K. Wild, “Studies of Phosphorus Doped Diamond-Like Carbon Films,” Diamond and Related Materials, Vol. 9, No. 3-6, 2000, pp. 1222-1227. doi:10.1016/S0925-9635(99)00305-2

[26]   M. Nagatsu, T. Sano, N. Takada, N. Toyoda, M. Tanga and H. Sugai, “Characteristics of Hydrogenated Amorphous Carbon Films Deposited by Large-Area Microwave-Sustained Surface Wave Plasma,” Diamond and Related Materials, Vol. 11, No. 3-6, 2002, pp. 976-979. doi:10.1016/S0925-9635(01)00616-1

[27]   S. Adhikari, S. Adhikary, A. M. M. Omer, M. Rusop, H. Uchida, T. Soga and M. Umeno, “Optical and Structural Properties of Amorphous Carbon Thin Films Deposited by Microwave Surface-Wave Plasma CVD,” Diamond and Related Materials, Vol. 15, No. 2-3, 2006, pp. 188-192. doi:10.1016/j.diamond.2005.08.069

[28]   S. Adhikari, D. C. Ghimire, H. R. Aryal, S. Adhikary, H. Uchida and M. Umeno,” Boron-Doped Hydrogenated Amorphous Carbon Films Grown by Surface-Wave Mode Microwave Plasma Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 15, No. 11-12, 2006, pp. 1909-1912. doi:10.1016/j.diamond.2006.07.022

[29]   J. Tauc, “Amorphous and Liquid Semiconductors,” Plenum Press, London, New York, 1974, Chapter 4. doi:10.1007/978-1-4615-8705-7

[30]   G. E. Bacon, “The Interlayer Spacing of Graphite,” Acta Crystallographica, Vol. 4, Pt. 6, 1951, pp. 558-562. doi:10.1107/S0365110X51001781

[31]   D. S. Knight and W. B. White, “Characterization of Diamond Films by Raman Spectroscopy,” Journal of Materials Research, Vol. 4, No. 2, 1989, pp. 385-393. doi:10.1557/JMR.1989.0385

[32]   S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini and G. Mariotto, “Nitrogen Modification of Hydrogenated Amorphous Carbon Films,” Journal of Applied Physics, Vol. 81, No. 6, 1997, p. 2626. doi:10.1063/1.363927

[33]   M. A. Tamor and W. C. Vassell, “Raman ‘Fingerprinting’ of Amorphous Carbon Films,” Journal of Applied Physics, Vol. 76, No. 6, 1994, p. 3823. doi:10.1063/1.357385

[34]   R. O. Dillon, J. A. Woollam and V. Katkanant, “Use of Raman Scattering to Investigate Disorder and Crystallite Formation in As-Deposited and Annealed Carbon Films,” Physical Review B, Vol. 29, No. 6, 1984, pp. 3482-3489. doi:10.1103/PhysRevB.29.3482

[35]   H. A. Yu, T. Kaneko, S. Yoshimura and Y. Suhng, “The Spectro-Photovoltaic Characteristics of a Carbonaceous Film/n-Type Silicon (C/n-Si) Photovoltaic Cell,” Applied Physics Letters, Vol. 69, No. 26, 1996, pp. 4078-4080. doi:10.1063/1.117824

 
 
Top