JMP  Vol.4 No.7 , July 2013
Energy Band Analysis of MQW Structure Based on Kronig-Penny Model
Author(s) Yu Zhang*, Yi Wang*
ABSTRACT

The effects of different potential well depths, well widths and barrier widths on energy band of multiple quantum well (MQW) structures are discussed in detail based on Kronig-Penny model. The results show that if the well and barrier width stay unchanged, the first and second band gaps increase linearly with the well depth. When the well depth is constant, the first and second band gaps increase exponentially with the barrier width in a wide well. However, in narrow well one, the second band gap saturates when the barrier width is wide enough. On condition that the well and barrier have equal width, the first band gap decreases exponentially with well-barrier width while the second gap still shows an exponential increase with the width. These results are insightful for the design of MQW structure optoelectronic devices.


Cite this paper
Y. Zhang and Y. Wang, "Energy Band Analysis of MQW Structure Based on Kronig-Penny Model," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 968-973. doi: 10.4236/jmp.2013.47130.
References
[1]   ü. ozgür, H. Y. Liu, X. Li, X. F. Ni and H. Morkoc, Proceedings of the IEEE, Vol. 98, 2010, pp. 1180-1196.

[2]   J. R. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone and Y. Park, Applied Physics Letters, Vol. 94, 2009, Article ID: 011113. doi:10.1063/1.3058687

[3]   M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek and Y. Park, Applied Physics Letters, Vol. 91, 2007, Article ID: 183507. doi:10.1063/1.2800290

[4]   H. Morkoc, “Handbook of Nitride Semiconductors and Devices,” Vol. 3, John Wiley & Sons Inc., New York, 2008.

[5]   M. F. Schubert, et al., Applied Physics Letters, Vol. 91, 2007, Article ID: 231114. doi:10.1063/1.2822442

[6]   M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong and Y. Park, Applied Physics Letters, Vol. 93, 2008, Article ID: 041102. doi:10.1063/1.2963029

[7]   M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers and M. G. Craford, Journal of Display Technology, Vol. 3, 2007, pp. 160-175. doi:10.1109/JDT.2007.895339

[8]   X. Ni, Q. Fan, R. Shimad, ü. ozgür and H. Morkoc, Applied Physics Letters, Vol. 93, 2008, Article ID: 171113. doi:10.1063/1.3012388

[9]   J. Xie, X. Ni, Q. Fan, R. Shimada, ü. ozgür and H. Morkoc, Applied Physics Letters, Vol. 93, 2008, Article ID: 121107. doi:10.1063/1.2988324

[10]   S.-H. Han, D.-Y. Lee, H.-W. Shim, G.-C. Kim, Y. S. Kim, S.-T. Kim, S.-J. Lee, C.-Y. Cho and S.-J. Park, Journal of Physics D: Applied Physics, Vol. 43, 2010, Article ID: 354004. doi:10.1088/0022-3727/43/35/354004

[11]   S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Japanese Journal of Applied Physics, Vol. 35, 1996, pp. L74-L76. doi:10.1143/JJAP.35.L74

[12]   R. Dahal, B. Pantha, J. Li, J. Y. Lin and H. X. Jiang, Applied Physics Letters, Vol. 94, 2009, Article ID: 063505. doi:10.1063/1.3081123

[13]   K. W. J. Barnham, I. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson and C. Rohr, Physica E, Vol. 14, 2002, pp. 27-36. doi:10.1016/S1386-9477(02)00356-9

[14]   P.-F. Yuh and K. L. Wang, Physical Review B, Vol. 38, 1988, pp. 13307-13315.

[15]   S. Mishra and S. Satpathy, Physical Review B, Vol. 68, 2003, Article ID: 045121.

[16]   M. Barbier, P. Vasilopoulos and F. M. Peeters, Physical Review B, Vol. 82, 2010, Article ID: 235408. doi:10.1103/PhysRevB.82.235408

[17]   C. Kittles, “Introduction to Solid State Physics,” 8th Edition, John Wiley & Sons, Inc., New York, 2004.

[18]   R. Dahal, J. Li, K. Aryal, J. Y. Lin and H. X. Jiang, Applied Physics Letters, Vol. 97, 2010, Article ID: 073115. doi:10.1063/1.3481424

[19]   Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai and S.-H. Yen, Applied Physics Letters, Vol. 95, 2009, Article ID: 011116. doi:10.1063/1.3176406

 
 
Top