Emergence of Space-Time and Gravitation

Author(s)
Walter Smilga

ABSTRACT

In relativistic quantum mechanics, elementary particles are described by irreducible unitary representations of the Poincaré group. The same applies to the center-of-mass kinematics of a multi-particle system that is not subject to external forces. As shown in a previous article, for spin-1/2 particles, irreducibility leads to a correlation between the particles that has the structure of the electromagnetic interaction, as described by the perturbation algorithm of quantum electrodynamics. The present article examines the consequences of irreducibility for a multi-particle system of spinless particles. In this case, irreducibility causes a gravitational force, which in the classical limit is described by the field equations of conformal gravity. The strength of this force has the same order of magnitude as the strength of the empirical gravitational force.

Cite this paper

W. Smilga, "Emergence of Space-Time and Gravitation,"*Journal of Modern Physics*, Vol. 4 No. 7, 2013, pp. 963-967. doi: 10.4236/jmp.2013.47129.

W. Smilga, "Emergence of Space-Time and Gravitation,"

References

[1] W. Smilga, Journal of Modern Physics, Vol. 4, 2013, pp. 561-571. doi:10.4236/jmp.2013.45079

[2] S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 44-46.

[3] A. R. Edmonds, “Angular Momentum in Quantum Mechanics,” Princeton University Press, Princeton, 1957, pp. 27-29.

[4] I. Newton, “Philosophiae Naturalis Principia Mathematica,” London, 1687.

[5] T. D. Newton and E. P. Wigner, Reviews of Modern Physics, Vol. 21, 1949, pp. 400-406. doi:10.1103/RevModPhys.21.400

[6] R. Haag, “Local Quantum Physics,” Springer-Verlag, Berlin, 1996, pp. 31-33. doi:10.1007/978-3-642-61458-3

[7] P. D. Mannheim, “Making the Case for Conformal Gravity.” http://arxiv.org/abs/1101.2186

[8] P. D. Mannheim, Progress in Particle and Nuclear Physics, Vol. 56, 2006, pp. 340-445. http://arxiv.org/abs/astro-ph/0505266

[9] C. M. Bender and P. D. Mannheim, “No-Ghost Theorem for the Fourth-Order Derivative Pais—Uhlenbeck Oscillator Model.” http://arxiv.org/abs/0706.0207

[10] J. Maldacena, “Einstein Gravity from Conformal Gravity.” http://arxiv.org/abs/1105.5632

[11] Wikipedia, “Observable Universe.” http://en.wikipedia.org/wiki/Observable_universe

[12] Wikipedia, “Gravitational Coupling Constant.” http://en.wikipedia.org/wiki/Gravitational_coupling_constant

[1] W. Smilga, Journal of Modern Physics, Vol. 4, 2013, pp. 561-571. doi:10.4236/jmp.2013.45079

[2] S. S. Schweber, “An Introduction to Relativistic Quantum Field Theory,” Harper & Row, New York, 1962, pp. 44-46.

[3] A. R. Edmonds, “Angular Momentum in Quantum Mechanics,” Princeton University Press, Princeton, 1957, pp. 27-29.

[4] I. Newton, “Philosophiae Naturalis Principia Mathematica,” London, 1687.

[5] T. D. Newton and E. P. Wigner, Reviews of Modern Physics, Vol. 21, 1949, pp. 400-406. doi:10.1103/RevModPhys.21.400

[6] R. Haag, “Local Quantum Physics,” Springer-Verlag, Berlin, 1996, pp. 31-33. doi:10.1007/978-3-642-61458-3

[7] P. D. Mannheim, “Making the Case for Conformal Gravity.” http://arxiv.org/abs/1101.2186

[8] P. D. Mannheim, Progress in Particle and Nuclear Physics, Vol. 56, 2006, pp. 340-445. http://arxiv.org/abs/astro-ph/0505266

[9] C. M. Bender and P. D. Mannheim, “No-Ghost Theorem for the Fourth-Order Derivative Pais—Uhlenbeck Oscillator Model.” http://arxiv.org/abs/0706.0207

[10] J. Maldacena, “Einstein Gravity from Conformal Gravity.” http://arxiv.org/abs/1105.5632

[11] Wikipedia, “Observable Universe.” http://en.wikipedia.org/wiki/Observable_universe

[12] Wikipedia, “Gravitational Coupling Constant.” http://en.wikipedia.org/wiki/Gravitational_coupling_constant