Noneuclidean Tessellations and Their Relation to Regge Trajectories

B. H. Lavenda^{*}

Show more

References

[1] T. Regge, Nuovo Cimento, Vol. 14, 1959, pp. 951-976.

[2] R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, “The Analytic S-Matrix,” Cambridge U.P., Cambridge, 1966, p. 12.

[3] B. H. Lavenda, Journal of Modern Physics, Vol. 4, 9 p.

[4] G. Veneziano, Nuovo Cimento, Vol. 57, 1968, pp. 190-197. doi:10.1007/BF02824451

[5] N. F. Mott and H. S. W. Massey, “The Theory of Atomic Collisions,” 2nd Edition, Clarendon Press, Oxford, 1949, p. 52.

[6] K. Gottfried, “Quantum Mechanics,” Vol. 1, Fundamentals, Benjamin, New York, 1966, p. 148.

[7] V. Singh, Physical Review, Vol. 127, 1962, pp. 632-636.
doi:10.1103/PhysRev.127.632

[8] L. D. Landau and E. M. Lifshitz, “Statistical Physics,” 2nd Edition, Pergamon, Oxford, 1959, p. 152.

[9] A. R. Forsyth, “A Treatise on Differential Equations,” 6th Edition, Macmillan, London, 1956, p. 228.

[10] V. Ovsienko and S. Tabachnikov, Notices AMS, Vol. 56, 2009, pp. 34-36.

[11] A. R. Choudhary, “New Relations between Analyticity, Regge Trajectories, Veneziano Amplitude, and Mobius Transformations,” arXiv: hep-th/0102019.

[12] J. R. Forshaw and D. A. Ross, “Quantum Chromodynamics and the Pomeron,” Cambridge U.P., Cambridge, 1997, p. 16. doi:10.1017/CBO9780511524387

[13] B. H. Lavenda, “Errors in the Bag Model of Strings, and Regge Trajectories Represent the Conservation of Angular Momentum in Hyperbolic Space,” arXiv:1112.4383.

[14] J. Gray, “Linear Differential Equations and Group Theory from Riemann to Poincaré,” Birkhauser, Boston, 1986, p. 36.

[15] L. R. Ford, “Automorphic Functions,” 2nd Edition, Chelsea Pub. Co., New York, 1929, p. 54.

[16] D. Mumford, C. Series and D. Wright, “Indra’s Pearls: The Vision of Felix Klein,” Cambridge U.P., Cambridge, 2002, p. 171.

[17] N. V. Efimov, “Higher Geometry,” Mir, Moscow, 1980, p. 413.

[18] H. Busemann and P. J. Kelly, “Projective Geometry and Projective Metrics,” Academic Press, New York, 1953, p. 231.

[19] J. M. Blatt and V. F. Weisskopf, “Theoretical Nuclear Physics,” Springer, New York, 1979, p. 330.
doi:10.1007/978-1-4612-9959-2

[20] R. Omnès and M. Froissart, “Mandelstam Theory and Regge Poles,” Benjamin, New York, 1963, p. 27.

[21] H. A. Bethe, “Intermediate Quantum Mechanics,” Benjamin, New York, 1964, p. 185.

[22] A. R. Forysth, “Theory of Functions of a Complex Variable,” Vol. 2, 3rd Edition, Cambridge U.P., Cambridge, 1918, p. 685.

[23] Z. Nehari, “Conformal Mapping,” McGraw-Hill, New York, 1952, p. 164.

[24] S. C. Frautschi, “Regge Poles and S-Matrix Theory,” W. A. Benjamin, New York, 1963, p. 126.