JBiSE  Vol.6 No.7 , July 2013
Comparison of metal artifact in digital tomosynthesis and computed tomography for evaluation of phantoms
Author(s) Tsutomu Gomi*
ABSTRACT
We compared metal artifact in X-ray digital tomosynthesis (DT) and modern computed tomography (CT) reconstruction to improve the image quality. We compared the images of a prosthetic phantom (titanium) and a contrast-detail phantom obtained by DT using conventional filtered backprojection (FBP), metal artifact reduction (MAR) processing, and simultaneous iterative reconstruction technique (SIRT) methods and those obtained by CT using conventional FBP and adaptive statistical iterative reconstruction methods. The effectiveness of each method for enhancing the visibility of a prosthetic phantom was quantified in terms of the intensity profile and root mean square error, and the removal of ghosting artifacts was quantified in terms of the artifact spread function (ASF). In addition, low contrast resolution was evaluated in terms of the contrast-to- noise ratio. Image error was smaller in the MAR DT images in the near in-focus-plane, and the intensity profiles revealed the beam hardening effect. Streak artifacts were reduced in the SIRT DT and adaptive statistical iterative reconstruction CT images. The ASF performances of the algorithms were ranked in descending order: 1) MAR DT; 2) CT (adaptive statistical iterative reconstruction, and conventional FBP); 3) SIRT DT; and 4) conventional FBP DT. The low contrast resolution was higher in the CT images than in the DT images. In conclusion, a review of the results revealed that the metal artifact reduction was highest for tomosynthesis with MAR processing, and the low contrast resolution performance was highest for CT.

Cite this paper
Gomi, T. (2013) Comparison of metal artifact in digital tomosynthesis and computed tomography for evaluation of phantoms. Journal of Biomedical Science and Engineering, 6, 722-731. doi: 10.4236/jbise.2013.67089.
References
[1]   Ziedses des Plante, B.G. (1932) Eine neue methode zur differenzierung in der roentgenographie (planigraphie). Acta Radiologica, 13, 182-192. doi:10.3109/00016923209135135

[2]   Miller, E.R., McCurry, E.M. and Hruska, B. (1971) An infinite number of laminagrams from a finite number of radiographs. Radiology, 98, 249-255.

[3]   Grant, D.G. (1972) Tomosynthesis. A three-dimensional radiographic imaging technique. IEEE Transaction on Biomedical Engineering, 19, 20-28. doi:10.1109/TBME.1972.324154

[4]   Baily, N.A., Lasser, E.C. and Crepeau, R.L. (1973) Electrofluoro-plangigraphy. Radiology, 107, 669-671.

[5]   Kruger, R.A., Nelson, J.A., Ghosh-Roy, D., Miller, F.J., Anderson, R.E. and Liu, P.Y. (1983) Dynamic tomographic digital subtraction angiography using temporal filteration. Radiology, 147, 863-867.

[6]   Sone, S., Kasuga, T., Sakai, F., Aoki, J., Izuno, I. and Tanizaki, Y. (1991) Development of a high-resolution digital tomosynthesis system and its clinical application. Radiographics, 11, 807-822.

[7]   Sone, S., Kasuga, T., Sakai, F., Kawai, T., Oguchi, K. and Hirano, H. (1995) Image processing in the digital tomosynthesis for pulmonary imaging. European Radiology, 5, 96-101. doi:10.1007/BF00178089

[8]   Stiel, G., Stiel, L.G., Klotz, E. and Nienaber, C.A. (1993) Digital flashing tomosynthesis: A promising technique for angiographic screening. IEEE Transaction on Medical Imaging, 12, 314-321. doi:10.1109/42.232261

[9]   Duryea, J., Dobbins, J.T. and Lynch, J.A. (2003) Digital tomosynthesis of hand joints for arthritis assessment. Medical Physics, 30, 325-333. doi:10.1118/1.1543573

[10]   Niklason, L.T., Christian, B.T., Niklason, L.E., Kopans, D.B., Castleberry, D.E. and Opsahl-Ong, B.H. (1997) Digital tomosynthesis in breast imaging. Radiology, 205, 399-406.

[11]   Dobbins III, J.T. and Godfrey, D.J. (2003) Digital x-ray tomosynthesis: Current state of the art and clinical potential. Physics in Medicine and Biology, 48, R65-R106. doi:10.1088/0031-9155/48/19/R01

[12]   Gomi, T. and Hirano, H. (2008) Clinical potential of digital linear tomosynthesis imaging of total joint arthroplasty. Journal of Digital Imaging, 21, 312-322. doi:10.1007/s10278-007-9040-9

[13]   Joemai, R.M.S., Bruin, P.W., Veldkamp, W.J.H. and Geleijns, J. (2012) Metal artifact reduction for CT: Development, implementation, and clinical comparison of a generic and a scanner-specific technique. Medical Physics, 39, 1125-1132. doi:10.1118/1.3679863

[14]   Hsieh, J. (1995) Computed tomography technology and applications; image artifacts causes and correction. In: Goldman, L.W. and Fowlkes, J.B., Eds., Medical CT and Ultrasound, Advanced Medical Publishing, Madison, 487518.

[15]   Wang, G., Snyder, D.L., O’Sullivan, J.A. and Vannier, M.W. (1996) Iterative debluring for metal artifacts reduction. IEEE Transaction on Medical Imaging, 15, 657-664. doi:10.1109/42.538943

[16]   Wang, G., Vannier, M.W. and Cheng, P.C. (1999) Iterative X-ray cone-beam tomography for metal artifacts reduction and local region reconstruction. Microscopy and Microanalysis, 5, 58-65. doi:10.1017/S1431927699000057

[17]   Wang, G., Frei, T. and Vannier, M.W. (2000) A fast iterative algorithm for metal artifact reduction in x-ray CT. Academic Radiology, 7, 607-614. doi:10.1016/S1076-6332(00)80576-0

[18]   De Man, B., Nuyts, J., Dupont, P. and Suetens, P. (2000) Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE Transaction on Nuclear Sciences, 47, 977-981. doi:10.1109/23.856534

[19]   Zhao, S., Robertson, D.D., Wang, G., Whiting, B. and Bae, K.T. (2000) X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses. IEEE Transaction on Medical Imaging, 19, 1238-1247. doi:10.1109/42.897816

[20]   Watzke, O. and Kalender, W.A. (2004) A pragmatic approach to metal artifact reduction in CT: Merging of metal artifact reduced images. European Radiology, 14, 849-856. doi:10.1007/s00330-004-2263-y

[21]   Kamel, E.M., Burger, C., Buck, A., von Schulthess, G.K. and Goerres, G.W. (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. European Radiology, 13, 724-728.

[22]   White, L.M. and Buckwalder, K.A. (2002) Technical considerations: CT and MR imaging in the postoperative orthopaedic patient. Seminars in Musculoskeletal Radiology, 6, 5-17. doi:10.1055/s-2002-23160

[23]   Buckwalter, K.A., Parr, J.A., Choplin, R.H. and Capello, W.N. (2006) Multichannel CT imaging of orthopaedic hardware and implants. Seminars in Musculoskeletal Radiology, 10, 86-97. doi:10.1055/s-2006-934219

[24]   Lee, M.J., Kim, S., Lee, S.A., Song, H.T., Huh, Y.M. and Kim, D.H. (2007) Overcoming artifacts from metallic orthopaedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics, 27, 791-803. doi:10.1148/rg.273065087

[25]   Machida, H., Yuhara, T., Mori, T., Ueno, E., Moribe, Y. and Sabol, J.M. (2010) Optimizing parameters for flatpanel detector digital tomosynthesis. Radiographics, 30, 546-562. doi:10.1148/rg.302095097

[26]   Tapiovaara, M. and Siiskonen, T. (2008) A Monte Carlo program for calculating patient doses in medical x-ray examinations. 2nd Edition, STUK-A231, Helsinki.

[27]   Stamm, G. (2012) CT-expo. http://www.sascrad.com/page10.php

[28]   Kak, A. and Slaney, M. (1988) Principles of computerized tomographic imaging. IEEE, New York.

[29]   Smith, D.B. (1985) Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods. IEEE Transaction on Medical Imaging, M1-4, 14-25. doi:10.1109/TMI.1985.4307689

[30]   Feldkamp, L.A., Davis, L.C. and Kress, J.W. (1984) Practical cone-beam algorithm. Journal of the Optical Society of America, A1, 612-619. doi:10.1364/JOSAA.1.000612

[31]   Ruttimann, U., Groenhuis, R. and Webber, R. (1984) Restoration of digital multilane tomosynthesis by a constrained iteration method. IEEE Transaction on Medical Imaging, MI-3, 141-148. doi:10.1109/TMI.1984.4307670

[32]   Bleuet, P., Guillemaud, R., Magin, I., Magnin, I. and Desbat, L. (2001) An adapted fan volume sampling scheme for 3D algebraic reconstruction in linear tomosynthesis. IEEE Transaction on Nuclear Sciences, 3, 1720-1724. doi:10.1109/NSSMIC.2001.1008674

[33]   Gordon, R., Bender, R. and Hermen, G.T. (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of theoretical biology, 29, 471-481. doi:10.1016/S0022-5193(70)80010-8

[34]   Gomi, T., Hirano, H. and Umeda, T. (2009) Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction. Computerized Medical Imaging and Graphics, 33, 257-274. doi:10.1016/j.compmedimag.2009.01.004

[35]   Marin, D., Nelson, R.C., Schindera, S.T., Richard, S., Youngblood, R.S. and Yoshizumi, T.T. (2010) Low-tubevoltage, high-tube-current multidetector abdominal CT: Improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience. Radiology, 254, 145-153. doi:10.1148/radiol.09090094

[36]   Hara, A.K., Paden, R.G., Silva, A.C., Kujak, J.L., Lawder, H.J. and Pavlicek, W. (2009) Iterative reconstruction technique for reducing body radiation dose at CT. American Journal of Roentgenology, 193, 764-771. doi:10.2214/AJR.09.2397

[37]   Yanagawa, M., Honda, O., Yoshida, S., Kikuyama, A., Inoue, A. and Sumikawa, H. (2010) Adaptive statistical iterative reconstruction technique for pulmonary CT: Image quality of the cadaveric lung on standard and reduced-dose CT. Academic Radiology, 17, 1259-1266. doi:10.1016/j.acra.2010.05.014

[38]   Wu, T., Stewart, A., Stanton, M., McCauley, T., Phillips, W. and Kopans, D.B. (2003) Tomographic mammogramphy using a limited number of low-dose cone-beam projection images. Medical Physics, 30, 365-380. doi:10.1118/1.1543934

[39]   Roth, T.D., Maertz, N.A., Parr, J.A., Buckwalter, K.A. and Choplin, R.H. (2012) CT of the hip prosthesis: Appearance of components, fixation, and complications. Radiographics, 32, 1089-1107. doi:10.1148/rg.324115183

 
 
Top