Jacket Matrix Based on Modular (3, 5, 6) Lattice Triangular Expansion

Show more

References

[1] M. H. Lee, B. S. Rajan and J. Y. Park, “A Generalized Reverse JacketTransform,” IEEE Transform Circuits System II, Analog Digital Signal Processing, Vol. 48, No. 7, 2001, pp. 684-691.

[2] M. H. Lee and Y. L. Borissov, “Proof of Non-existence of Borderedjacket Matrices of Odd Order Over Some Fields,” Electronic Letters,Vol. 46, No. 5, 2010, pp. 349-351. doi:10.1049/el.2010.2991

[3] R. E. Blahut, “Theory and Practice of Error Control Codes,”Addison- Wesley, New York, 1983.

[4] M. H. Lee, B. S. Rajan and J. Y. Park, “A Generalized Reverse Jackettransform,” IEEE Transformation Circuits System II, Analog Digital Signal Processing, Vol. 48, No. 7, 2001, pp. 684-691.

[5] T. S. Han and K. Kobayashi, “A New Achievable Rate Region for Theinterference Channel,” IEEE Transaction Information Theory, Vol. 27, No. 1, 1981, pp.49-60.
doi:10.1109/TIT.1981.1056307

[6] S. Sridharan, A. Jafarian, S. Vishwanath, S. A. Jafar and S. Shamai, “A Layered Lattice Coding Scheme for a Class of Three User Gaussian Interference Channels,” IEEE Transaction Information Theory,2008. http://arxiv.org/abs/0809.4316.

[7] R. H. Etkin, D. N. C. Tse and H. Wang, “Gaussian Interference Channel Capacity to within One Bit,” Vol. 54, No. 12, 2008, pp. 5534-5562.

[8] A. S. Motahari, S. O. Gharan and A. K. Khandani, “Real InterferenceAlignment with Real Numbers,” IEEE Transaction Information Theory, 2009, p. 1208.

[9] R. Etkin and E. Ordentlich, “On the Degrees-of-freedom of the K-userGaussian Interference Chan-nel,”2009. http://arxiv.org/abs/0901.1695.

[10] V. R. Cadambe, S. A. Jafar and C. Wang, “Interference Alignment with Asymmetric Complex Signaling - settling the Host,”.

[11] A. Jafarian, J. Jose and S. Vishwanath, “Lattice Alignment Using Algebraic Alignment,” Allerton Conference on Community Control and Computing, 2009.

[12] M. H. Lee, “The Center Weighted Hadamard Transform,” IEEE Transaction Circuits System, Vol. 36, No. 9, pp. 1247-1249.

[13] R. Zamir and M. Feder, “On Lattice Quantization Noise,” IEEE Transaction Information Theory, Vol. IT-42, 1996, pp. 1152-1159. doi:10.1109/18.508838

[14] U. Erez, S. Litsyn and R. Zamir, “Lattices Which Are Good for (almost)Everything,” IEEE Transaction Information Theory, Vol. IT-51, 2005, pp. 3401-3416.
doi:10.1109/TIT.2005.855591

[15] T. M. Cover and J. A. Thomas, “Elements of Information Theory,” New York: Wiley, 1991.