NS  Vol.5 No.7 , July 2013
Citrus oils as chain transfer agents in the cross-metathesis degradation of polybutadiene in block copolymers using Ru-alkylidene catalysts
Abstract: The cross-metathesis degradation of poly(styrene-co-butadiene) (styrene, 30 wt%) (SB-1) and poly(styrene-co-butadiene) (styrene, 21 wt%) (SB- 2) in the presence of essential oils and d-limo-nene as chain transfer agents (CTAs) using Rualkylidene catalysts (PCy3)2(Cl)2Ru = CHPh (I) and (1,3-diphenyl-4,5-dihydroimidazol-2-ylidene) (PCy3)Cl2Ru=CHPh (II) was studied. Terpene-terminated butadiene oligomers and polystyrene blocks were obtained as products of the degradation of SB-1 and SB-2. Catalysts I and II showed high activity in the degradation of SB copolymers to produce the low molecular weight products (Mn = 276 - 335 g·mol-1) and yields ranging from 91% - 95%. The cross-metathesis degradation of copolymers in organic solvents and in citrus oils (mandarin, orange and lemon oils) proceeded with similar efficiency and resulted in the same molecular weight butadiene oligomers. According to GS/MS (EI) analysis, the main products of the degradation of SB-1 copolymer with d-limonene were limonene-terminated oligomers of series Am (m = 1 - 4).
Cite this paper: Martínez, A. , Gutiérrez, S. and Tlenkopatchev, M. (2013) Citrus oils as chain transfer agents in the cross-metathesis degradation of polybutadiene in block copolymers using Ru-alkylidene catalysts. Natural Science, 5, 857-864. doi: 10.4236/ns.2013.57103.

[1]   Baser, K.H.C. and Buchbauer, G. (2010) Handbook of essential oils: Science, technology and applications. CRC Press, Boca Raton/London/New York.

[2]   Puskas, J.E. and Kaszas, G., (2003) Carbocationic polymerization. Encyclopedia of polymer science and technology, V5, Wiley-Interscience, New York.

[3]   Kennedy, J.P. (1975) Cationic polymerization of olefins: A critical inventory. Wiley-Interscience, New York.

[4]   Vougioukalakis, G.C. and Grubbs, R.H. (2008) Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands. Journal of the American Chemical Society, 130, 2234-2245. doi:10.1021/ja075849v

[5]   Sashuk, V., Peeck, L.H. and Plenio, H. (2010) [(NHC)(NHCewg)RuCl2(CHPh)] complexes with modified NHCewg ligands for efficient ring-closing metathesis leading to tetrasubstituted olefins. Chemical European Journal, 16, 3983-3993. doi:10.1002/chem.200903275

[6]   Meek, S.J., O’Brien, R.V., Llaveria, J., Schrock, R.R. and Hoveyda, A.H. (2011) Catalytic Z-selective olefin cross metathesis for natural product synthesis. Nature, 471, 461-466. doi:10.1038/nature09957

[7]   Fomine, S. and Tlenkopatchev, M.A. (2012) Metathesis transformations of terpenes. Computational modeling of (-)-α-pinene ring opening by ruthenium and tungsten carbene catalysts, Journal Organometallic Chemistry, 701, 68-74. doi:10.1016/j.jorganchem.2011.12.023

[8]   Srikrishna, A., Dethe, D.H. and Kumar, P.R. (2004) En antiospecific construction of the BC-ring system of taxanes. Tetrahedron Letters, 45, 2939-2942. doi:10.1016/j.tetlet.2004.02.075

[9]   Mehta, G. and Kumaran, R.S. (2005) A sequential RCM/ fragmentation protocol towards chiral, stereodefined me dium ring sesquiterpenoids. A carvone route to E and Z-germacrenes. Tetrahedron Letters, 46, 8831-8835. doi:10.1016/j.tetlet.2005.10.093

[10]   Bilel, H., Hamdi, N., Zagrouba, F., Fischmeister, C. and Bruneau, C. (2011) Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. Green Chemistry, 13, 1448-1452. doi:10.1039/c1gc15024c

[11]   Mathers, R.T., McMahon, K.C., Damodaran, K., Retaride, C.J. and Kelly, D.J. (2006) Ring-opening metathesis polymerizations in D-limonene: A renewable polymerizetion solvent and chain transfer agent for the synthesis of alkene macromonomers. Macromolecules, 39, 8982-8986. doi:10.1021/ma061699h

[12]   Mathers, R.T., Damodaran, K., Rendos, M.G. and Lavrich, M.S. (2009) Functional hyperbranched polymers using ring-opening metathesis polymerization of dicyclopenta diene with monoterpenes. Macromolecules, 42, 1512-1518. doi:10.1021/ma802441t

[13]   Justin, M.D., Matthew, D.C, Matthew, G.R, Cory, J.U., Susan, G.P. and Mathers, R.T. (2011) Controlling cross linking in thermosets via chain transfer with monoterpenes. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3719-3727. doi:10.1002/pola.24808

[14]   Gutierrez, S. and Tlenkopatchev, M.A. (2011) Metathesis of renewable products: Degradation of natural rubber via cross-metathesis with β-pinene using Ru-alkylidene catalysts. Polymer Bulletin, 66, 1029-1038. doi:10.1007/s00289-010-0330-x

[15]   Martinez, A., Gutierrez, S. and Tlenkopatchev, M.A. (2012) Metathesis transformations of natural products: Cross-metathesis of natural rubber and mandarin oil by Ru-alkylidene catalysts. Molecules, 17, 6001-6010. doi:10.3390/molecules17056001

[16]   Ivin, K.J. and Mol, J.C. (1997) Olefin metathesis and metathesis polymerization. Academic Press, California.

[17]   Korshak, Yu. V., Dolgoplosk, B.A. and Tlenkopachev, M.A. (1977) Cyclodegradation of polyalkenamers in solutions acted on by disproportionation catalysts. Recueil des Travaux Chimiques des Pays-Bas, 96, M64-M66.

[18]   Korshak, Yu. V., Tlenkopatchev, M.A., Dolgoplosk, B.A., Avdeikina, E.G. and Kutepov, D.F. (1982) Intra and in termolecular metathesis reactions in the formation and degradation of unsaturated polymers. Journal of Molecular Catalysis, 15, 207-218. doi:10.1016/0304-5102(82)80018-7

[19]   Thorn-Csanyi, E. (1994) Quantitative metathetic degradation of rubbers and sulfur crosslinked rubbers—Including tires. Rubber Chemistry and Technology, 67, 786-796. doi:10.5254/1.3538710

[20]   Craig, S.W., Monzer, J.A. and Coughlin, E.B. (2001) Highly efficient acyclicdiene metastasis depolymerization using a ruthenium catalyst containing a N-hetero cyclic carbene ligand. Macromolecules, 34, 7929-7931. doi:10.1021/ma011188p

[21]   Lucas, F., Peruch, F., Carlotti, S., Deffieux, A., Leblanc, A. and Boisson, C. (2008) Synthesis of dihydroxy poly (ethylene-co-butadiene) via metathetical depolymerization: Kinetic and mechanistic aspects. Polymer, 49, 4935-4941. doi:10.1016/j.polymer.2008.09.012

[22]   Sedransk, K.L., Kaminski, C.F., Hutchings, L.R. and Moggridge, G.D. (2011) The metathetic degradation of poly isoprene and polybutadiene in block copolymers using Grubbs second generation catalyst. Polymer Degradation and Stability, 96, 1074-1080. doi:10.1016/j.polymdegradstab.2011.03.007

[23]   Sadaka, F., Compistron, I., Laguerre, A. and Pilard, J. (2013) The metathetic degradation of polyisoprene and polybutadiene in block copolymers using Grubbs second generation catalyst. Polymer Degradation and Stability, 98, 736-742. doi:10.1016/j.polymdegradstab.2012.12.018

[24]   Fomine, S. and Tlenkopatchev, M.A. (2010) Computational modeling of renewable molecules. Ruthenium al kylidene-mediated metathesis of trialkyl-substituted ole fins. Organometallics, 29, 1580-1587. doi:10.1021/om900848q

[25]   Fomine, S. and Tlenkopatchev, M.A. (2007) Ring-opening of cyclohexene via metathesis by ruthenium carbene complexes. A computational study. Organometallics, 26, 4491-4497. doi:10.1021/om700425d

[26]   Bevington, J.C. and Huckerby, T.N. (2006) Studies of end-groups in polystyrene using 1H-NMR. European Polymer Journal, 42, 1433-1436. doi:10.1016/j.eurpolymj.2005.12.011

[27]   Tlenkopatchev, M.A., Barcenas, A. and Fomine, S. (2001) Computational study of metathesis degradation of rubber, 2. Distribution of cyclic oligomers via intramolecular metathesis. Degradation of Natural Rubber, Macromolecular Theory and Simulations, 10, 441-446. doi:10.1002/1521-3919(20010601)10:5<441::AID-MATS441>3.0.CO;2-#

[28]   Thorn-Csanyi, E., Hummer, J. and Zilles, J.U. (1994) Metathetic ring-chain equilibrium; synthesis of 1,5,9-trimethyl-(1E,5E,9E)-cyclododecatriene from 1,4-polyisoprene. Macromolecular Rapid Communications, 15, 797-800. doi:10.1002/marc.1994.030151008