OJGas  Vol.3 No.3 , July 2013
Helicobacter infection decreases basal colon inflammation, but increases disease activity in experimental IBD
ABSTRACT

Background: Helicobacter species are best known for their roles in the pathology of gastritis; however, several Helicobacter species also colonize the intestine, and less is known about effects of Helicobacter on the development of intestinal inflammation. To evaluate contributions of Helicobacter in inflammatory bowel disease, we investigated whether and how pre-existing intestinal colonization would affect disease severity and biomarkers of inflammation in experimental IBD. Materials and Methods: Mice were infected with H. muridarum 2 weeks prior to induction of colitis mediated by 3% dextran sulfate (DSS). Disease activity index, stool blood and consistency, colon length, myeloperoxidase, histopathology, blood and lymphatic vessels, and numbers of dilated mucosal crypts were measured in control, DSS-only, H. muridarum-infected, and H. muridarum-infected + DSS mice. Results: Prior to DSS challenge, H. muridarum-infected mice showed little distal gut injury by several indices of colon inflammation with decreased blood vessel density in the submucosa, and lower lymphatic density in the mucosa and submucosa. However, after DSS colitis, H. muridarum-infected mice exhibited significantly greater disease. Weight change, stool bleeding, diarrhea, and angiogenesis were all increased in H. muridarum-infected mice in DSS colitis compared to DSS controls. Conclusions: Our data show that Helicobacter colonization of the intestine, unlike that of the stomach, lowers basal gut inflammatory scores, but increases disease activity and inflammation in an acute colitis model. Intestinal Helicobacter infection may therefore represent a significant sub-clinical factor which predisposes the gut to inflammatory injury.


Cite this paper
Monceaux, C. , Testerman, T. , Boktor, M. , Jordan, P. , Adegboyega, P. , McGee, D. , Jennings, M. , Parker, C. , Gupta, S. , Yi, P. , Ganta, V. , Galous, H. , Manas, K. and Alexander, J. (2013) Helicobacter infection decreases basal colon inflammation, but increases disease activity in experimental IBD. Open Journal of Gastroenterology, 3, 177-189. doi: 10.4236/ojgas.2013.33029.
References
[1]   Wessler, S., Gimona, M. and Rieder, G. (2011) Regulation of the actin cytoskeleton in helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Communication and Signaling, 9, 27. doi:10.1186/1478-811X-9-27

[2]   Bashinskaya, B., Nahed, B.V., Redjal, N., Kahle, K.T. and Walcott, B.P. (2011) Trends in peptic ulcer disease and the identification of helicobacter pylori as a causative organism: Population-based estimates from the US nationwide inpatient sample. Journal of Global Infectious Diseases, 3, 366-370. doi:10.4103/0974-777X.91061

[3]   Correa, P. and Piazuelo, M.B. (2012) Evolutionary history of the Helicobacter pylori genome: Implications for gastric carcinogenesis. Gut and Liver, 6, 21-28. doi:10.5009/gnl.2012.6.1.21

[4]   Schottker, B., Adamu, M.A., Weck, M.N. and Brenner, H. (2012) Helicobacter pylori infection is strongly associated with gastric and duodenal ulcers in a large prospective study. Clinical Gastroenterology and Hepatology, Vol. 10, No. 5, 2012, pp. 487-493. doi:10.1016/j.cgh.2011.12.036

[5]   Contreras, M., Salazar, V., Garcia-Amado, M.A., Reyes, N., Aparcero, M., Silva, O., Castro, D., Romero, R., Gueneau, P. and Michelangeli, F. (2012) High frequency of helicobacter pylori in the esophageal mucosa of dyspeptic patients and its possible association with histopathological alterations. International Journal of Infectious Diseases, Vol. 16, No. 5, 2012, pp. e364-e370. doi:10.1016/j.ijid.2012.01.007

[6]   Koshiol, J., Flores, R., Lam, T.K., Taylor, P.R., Weinstein, S.J., Virtamo, J., Albanes, D., Perez-Perez, G., Caporaso, N.E. and Blaser, M.J. (2012) Helicobacter pylori seropositivity and risk of lung cancer. PLoS One, 7, e32106. doi:10.1371/journal.pone.0032106

[7]   Marini, R.P., Muthupalani, S., Shen, Z., Buckley, E.M., Alvarado, C., Taylor, N.S., Dewhirst, F.E., Whary, M.T., Patterson, M.M. and Fox, J.G. (2010) Persistent infection of rhesus monkeys with 'Helicobacter macacae’ and its isolation from an animal with intestinal adenocarcinoma. Journal of Medical Microbiology, 59, 961-969. doi:10.1099/jmm.0.019117-0

[8]   Abraham, C. and Cho, J.H. (2009) Inflammatory bowel disease. New England Journal of Medicine, 361, 20662078. doi:10.1056/NEJMra0804647

[9]   Casellas, F., Lopez-Vivancos, J., Badia, X., Vilaseca, J. and Malagelada, J.R. (2001) Influence of inflammatory bowel disease on different dimensions of quality of life. European Journal of Gastroenterology Hepatology, 13, 567-572. doi:10.1097/00042737-200105000-00017

[10]   Chidlow Jr., J.H., Langston, W., Greer, J.J., Ostanin, D., Abdelbaqi, M., Houghton, J., Senthilkumar, A., Shukla, D., Mazar, A.P., Grisham, M.B. and Kevil, C.G. (2006) Differential angiogenic regulation of experimental colitis. The American Journal of Pathology, 169, 2014-2030. doi:10.2353/ajpath.2006.051021

[11]   Geleff, S., Schoppmann, S.F. and Oberhuber, G. (2003) Increase in podoplanin-expressing intestinal lymphatic vessels in inflammatory bowel disease. Virchows Archiv, 442, 231-237.

[12]   Kaiserling, E., Krober, S. and Geleff, S. (2003) Lymphatic vessels in the colonic mucosa in ulcerative colitis. Lymphology, 36, 52-61.

[13]   Danese, S. (2011) Role of the vascular and lymphatic endothelium in the pathogenesis of inflammatory bowel disease: “Brothers in arms”. Gut, 60, 998-1008. doi:10.1136/gut.2010.207480

[14]   Scaldaferri, F., Vetrano, S., Sans, M., Arena, V., Straface, G., Stigliano, E., Repici, A., Sturm, A., Malesci, A., Panes, J., Yla-Herttuala, S., Fiocchi, C. and Danese, S. (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology, 136, 585-595. doi:10.1053/j.gastro.2008.09.064

[15]   Van Kruiningen, H.J. and Colombel, J.F. (2008) The forgotten role of lymphangitis in Crohn’s disease. Gut, 57, 1-4. doi:10.1136/gut.2007.123166

[16]   Jantchou, P., Monnet, E. and Carbonnel, F. (2006) Environmental risk factors in Crohn’s disease and ulcerative colitis (excluding tobacco and appendicectomy). Gastroenterologie Clinique et Biologique, 30, 859-867. doi:10.1016/S0399-8320(06)73333-4

[17]   Fox, J.G., Boutin, S.R., Handt, L.K., Taylor, N.S., Xu, S., Rickman, B., Marini, R.P., Dewhirst, F.E., Paster, B.J., Motzel, S. and Klein, H.J. (2007) Isolation and characterization of a novel helicobacter species, “Helicobacter macacae,” from rhesus monkeys with and without chronic idiopathic colitis. Journal of Clinical Microbiology, 45, 4061-4063. doi:10.1128/JCM.01100-07

[18]   Man, S.M., Zhang, L., Day, A.S., Leach, S. and Mitchell, H. (2008) Detection of enterohepatic and gastric heliconbacter species in fecal specimens of children with Crohn’s disease. Helicobacter, 13, 234-238. doi:10.1111/j.1523-5378.2008.00607.x

[19]   Laharie, D., Asencio, C., Asselineau, J., Bulois, P., Bourreille, A., Moreau, J., Bonjean, P., Lamarque, D., Pariente, A., Soule, J.C., Charachon, A., Coffin, B., Perez, P., Megraud, F. and Zerbib, F. (2009) Association between entero-hepatic Helicobacter species and Crohn’s disease: A prospective cross-sectional study. Alimentary Pharmacology & Therapeutics, 30, 283-293. doi:10.1111/j.1365-2036.2009.04034.x

[20]   Tankovic, J., Smati, M., Lamarque, D. and Delchier, J.C. (2011) First detection of Helicobacter canis in chronic duodenal ulcerations from a patient with Crohn’s disease. Inflammatory Bowel Diseases, 17, 1830-1831. doi:10.1002/ibd.21610

[21]   Chaouche-Drider, N., Kaparakis, M., Karrar, A., Fernandez, M.I., Carneiro, L.A., Viala, J., Boneca, I.G., Moran, A.P., Philpott, D.J. and Ferrero, R.L. (2009) A commensal Helicobacter sp. of the rodent intestinal flora activates TLR2 and NOD1 responses in epithelial cells. PLoS One, 4, e5396. doi:10.1371/journal.pone.0005396

[22]   Ge, Z., Feng, Y., Muthupalani, S., Eurell, L.L., Taylor, N.S., Whary, M.T. and Fox, J.G. (2011) Coinfection with enterohepatic Helicobacter species can ameliorate or promote Helicobacter pylori-induced gastric pathology in C57BL/6 mice. Infection and Immunity, 79, 3861-3871. doi:10.1128/IAI.05357-11

[23]   Dijkstra, G., Yuvaraj, S., Jiang, H.Q., Bun, J.C., Moshage, H., Kushnir, N., Peppelenbosch, M.P., Cebra, J.J. and Bos, N.A. (2007) Early bacterial dependent induction of inducible nitric oxide synthase (iNOS) in epithelial cells upon transfer of CD45RB (high) CD4(+) T cells in a model for experimental colitis. Inflammatory Bowel Diseases, 13, 1467-1474. doi:10.1002/ibd.20262

[24]   Jiang, H.Q., Kushnir, N., Thurnheer, M.C., Bos, N.A. and Cebra, J.J. (2002) Monoassociation of SCID mice with Helicobacter muridarum, but not four other enterics, provokes IBD upon receipt of T cells. Gastroenterology, 122, 1346-1354. doi:10.1053/gast.2002.32959

[25]   Testerman, T.L., McGee, D.J. and Mobley, H.L. (2001) Helicobacter pylori growth and urease detection in the chemically defined medium Ham’s F-12 nutrient mixture. Journal of Clinical Microbiology, 39, 3842-3850. doi:10.1128/JCM.39.11.3842-3850.2001

[26]   Riley, L.K., Franklin, C.L., Hook Jr., R.R., and BeschWilliford, C. (1996) Identification of murine helicobacters by PCR and restriction enzyme analyses. Journal of Clinical Microbiology, 34, 942-946.

[27]   Solnick, J.V. and Schauer, D.B. (2001) Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clinical Microbiology Reviews, 14, 59-97. doi:10.1128/CMR.14.1.59-97.2001

[28]   Ganta, V.C., Cromer, W., Mills, G.L., Traylor, J., Jennings, M., Daley, S., Clark, B., Mathis, J.M., Bernas, M., Boktor, M., Jordan, P., Witte, M. and Alexander, J.S. (2010) Angiopoietin-2 in experimental colitis. Inflammatory Bowel Diseases, 16, 1029-1039. doi:10.1002/ibd.21150

[29]   Cooper, H.S., Murthy, S.N., Shah, R.S. and Sedergran, D.J. (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, 69, 238-249.

[30]   Sasaki, M., Bharwani, S., Jordan, P., Elrod, J.W., Grisham, M.B., Jackson, T.H., Lefer, D.J. and Alexander, J.S. (2003) Increased disease activity in eNOS-deficient mice in experimental colitis. Free Radical Biology & Medicine, 35, 1679-1687. doi:10.1016/j.freeradbiomed.2003.09.016

[31]   Dieleman, L.A., Palmen, M.J., Akol, H., Bloemena, E., Pena, A.S., Meuwissen, S.G. and Van Rees, E.P. (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical & Experimental Immunology, 114, 385-391. doi:10.1046/j.1365-2249.1998.00728.x

[32]   Murikinati, S., Juttler, E., Keinert, T., Ridder, D.A., Muhammad, S., Waibler, Z., Ledent, C., Zimmer, A., Kalinke, U. and Schwaninger, M. (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB, 24, 788-798. doi:10.1096/fj.09-141275

[33]   Suzuki, H., Suzuki, M., Imaeda, H. and Hibi, T. (2009) Helicobacter pylori and microcirculation. Microcirculation, 16, 547-558. doi:10.1080/10739680902949953

[34]   Kalia, N., Jacob, S., Brown, N.J., Reed, M.W., Morton, D. and Bardhan, K.D. (1997) Studies on the gastric mucosal microcirculation. 2. Helicobacter pylori water soluble extracts induce platelet aggregation in the gastric mucosal microcirculation in vivo. Gut, 41, 748-752. doi:10.1136/gut.41.6.748

[35]   Kalia, N., Bardhan, K.D., Atherton, J.C. and Brown, N.J. (2002) Toxigenic Helicobacter pylori induces changes in the gastric mucosal microcirculation in rats. Gut, 51, 641647. doi:10.1136/gut.51.5.641

[36]   Kalia, N., Bardhan, K.D., Reed, M.W., Jacob, S. and Brown, N.J. (2000) Mechanisms of Helicobacter pyloriinduced rat gastric mucosal microcirculatory disturbances in vivo. Digestive Diseases and Sciences, 45, 763772. doi:10.1023/A:1005456029396

[37]   Kurose, I., Granger, D.N., Evans Jr., D.J., Evans, D.G., Graham, D.Y., Miyasaka, M., Anderson, D.C., Wolf, R.E., Cepinskas, G. and Kvietys, P.R. (1994) Helicobacter pylori-induced microvascular protein leakage in rats: Role of neutrophils, mast cells, and platelets. Gastroenterology, 107, 70-79.

[38]   Kalia, N., Bardhan, K.D., Reed, M.W., Jacob, S. and Brown, N.J. (2000) Effects of chronic administration of Helicobacter pylori extracts on rat gastric mucosal microcirculation in vivo. Digestive Diseases and Sciences, 45, 1343-1351. doi:10.1023/A:1005504019868

[39]   Atuma, C., Engstrand, L. and Holm, L. (1999) Helicobacter pylori extracts reduce gastric mucosal blood flow by a nitric oxide-independent but mast celland plateletactivating factor receptor-dependent pathway in rats. Scandinavian Journal of Gastroenterology, 34, 11831189. doi:10.1080/003655299750024689

[40]   Fox, J.G., Ge, Z., Whary, M.T., Erdman, S.E. and Horwitz, B.H. (2011) Helicobacter hepaticus infection in mice: Models for understanding lower bowel inflammation and cancer. Mucosal Immunology, 4, 22-30. doi:10.1038/mi.2010.61

[41]   Brzozowski, T., Konturek, P.C., Sliwowski, Z., Drozdowicz, D., Pajdo, R., Stachura, J., Hahn, E.G. and Konturek, S.J. (1997) Lipopolysaccharide of Helicobacter pylori protects gastric mucosa via generation of nitric oxide. Journal of Physiology and Pharmacology, 48, 699-717.

[42]   Whittle, B.J., Morschl, E., Pozsar, J., Moran, A.P. and Laszlo, F. (2001) Helicobacter pylori lipopolysaccharide provokes iNOS-mediated acute systemic microvascular inflammatory responses in rat cardiac, hepatic, renal and pulmonary tissues. Journal of Physiology, Paris, 95, 257259.

[43]   Pellicano, R., Mazzarello, M.G., Morelloni, S., Allegri, M., Arena, V., Ferrari, M., Rizzetto, M. and Ponzetto, A. (1999) Acute myocardial infarction and Helicobacter pylori seropositivity. International Journal of Clinical and Laboratory Research, 29, 141-144. doi:10.1007/s005990050080

[44]   Prasad, A., Zhu, J., Halcox, J.P., Waclawiw, M.A., Epstein, S.E. and Quyyumi, AA. (2002) Predisposition to atherosclerosis by infections: Role of endothelial dysfunction. Circulation, 106, 184-190. doi:10.1161/01.CIR.0000021125.83697.21

[45]   Luther, J., Owyang, S.Y., Takeuchi, T., Cole, T.S., Zhang, M., Liu, M., Erb-Downward, J., Rubenstein, J.H., Chen, C.C., Pierzchala, A.V., Paul, J.A. and Kao, J.Y. (2011) Helicobacter pylori DNA decreases pro-inflammatory cytokine production by dendritic cells and attenuates dextran sodium sulphate-induced colitis. Gut, 60, 1479-1486. doi:10.1136/gut.2010.220087

[46]   Katakura, K., Lee, J., Rachmilewitz, D., Li, G., Eckmann, L. and Raz, E. (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. The Journal of Clinical Investigation, 115, 695-702.

[47]   Lee, J., Gonzales-Navajas, J.M. and Raz, E. (2008) The “polarizing-tolerizing” mechanism of intestinal epithetlium: Its relevance to colonic homeostasis. Seminars in Immunopathology, 30, 3-9. doi:10.1007/s00281-007-0099-7

[48]   Vijay-Kumar, M., Wu, H., Aitken, J., Kolachala, V.L., Neish, A.S., Sitaraman, S.V. and Gewirtz, A.T. (2007) Activation of toll-like receptor 3 protects against DSSinduced acute colitis. Inflammatory Bowel Diseases, 13, 856-864. doi:10.1002/ibd.20142

[49]   Kaakoush, N.O., Holmes, J., Octavia, S., Man, S.M., Zhang, L., Castano-Rodriguez, N., Day, A.S., Leach, S.T., Lemberg, D.A., Dutt, S., Stormon, M., O’Loughlin, E.V., Magoffin, A. and Mitchell, H. (2010) Detection of Helicobacteraceae in intestinal biopsies of children with Crohn’s disease. Helicobacter, 15, 549-557. doi:10.1111/j.1523-5378.2010.00792.x

[50]   Yoshizawa, N., Takenaka, Y., Yamaguchi, H., Tetsuya, T., Tanaka, H., Tatematsu, M., Nomura, S., Goldenring, J.R. and Kaminishi, M. (2007) Emergence of spasmolytic polypeptide-expressing metaplasia in Mongolian gerbils infected with Helicobacter pylori. Laboratory Investigation, 87, 1265-1276. doi:10.1038/labinvest.3700682

[51]   Bui, H.X., Rosario, A.D., Sonbati, H., Lee, C.Y., George, M. and Ross, J.S. (1991) Helicobacter pylori affects the quality of experimental gastric ulcer healing in a new animal model. Experimental and Molecular Pathology, 55, 261-268. doi:10.1016/0014-4800(91)90006-J

[52]   Sugimoto, M., Ohno, T. and Yamaoka, Y. (2011) Expression of angiotensin II type 1 and type 2 receptor mRNAs in the gastric mucosa of Helicobacter pylori-infected Mongolian gerbils. Journal of Gastroenterology, 46, 1177-1186. doi:10.1007/s00535-011-0433-7

[53]   Burnett-Hartman, A.N., Newcomb, P.A. and Potter, J.D. (2008) Infectious agents and colorectal cancer: A review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus. Cancer Epidemiology, Biomarkers & Prevention, 17, 2970-2979. doi:10.1158/1055-9965.EPI-08-0571

 
 
Top