ACS  Vol.3 No.3 , July 2013
Multi-Decadal Trends of Global Surface Temperature: A Broken Line with Alternating ~30 yr Linear Segments?

We investigate global temperature data produced by the Climate Research Unit at the University of East Anglia (CRU) and the Berkeley Earth Surface Temperature consortium (BEST). We first fit the 1850-2010 data with polynomials of degrees 1 to 9. A significant ~60-yr oscillation is accounted for as soon as degree 4 is reached. This oscillation is even better modeled as a broken line, more precisely a series of ~30-yr long linear segments, with slope breaks (singularities) in ~1904, ~1940, and ~1974 (±3 yr), and a possible recent occurrence at the turn of the 20th century. Oceanic indices PDO (Pacific Decadal Oscillation) and AMO (Atlantic Multidecadal Oscillation) have undergone major changes (respectively of sign and slope) roughly at the same times as the temperature slope breaks. This can be interpreted with a system of oceanic non-linear coupled oscillators with abrupt mode shifts. Thus, the Earth’s climate may have entered a new mode (a new ~30-yr episode) near the turn of the 20th century: no further temperature increase, a dominantly negative PDO index and a decreasing AMO index might be expected for the next decade or two.

Cite this paper
V. Courtillot, J. Mouël, V. Kossobokov, D. Gibert and F. Lopes, "Multi-Decadal Trends of Global Surface Temperature: A Broken Line with Alternating ~30 yr Linear Segments?," Atmospheric and Climate Sciences, Vol. 3 No. 3, 2013, pp. 364-371. doi: 10.4236/acs.2013.33038.
[1]   C. Essex, R. McKitrick and B. Andresen, “Does a Global Temperature Exist?” Journal of Non-Equilibrium Thermodynamics, Vol. 32, No. 1, 2007, pp. 1-27. doi:10.1515/JNETDY.2007.001

[2]   L. B. Klyashtorin and A. A. Lyubushin, “On the Coherence between Dynamics of the World Fuel Consumption and Global Temperature Anomaly,” Energy and Environment, Vol. 14, No. 6, 2003, pp. 773-782. doi:10.1260/095830503322793641

[3]   N. Scafetta, “Empirical Evidence for a Celestial Origin of the Climate Oscillations and Its Implications,” Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 72, No. 13, 2010, pp. 951-970. doi:10.1016/j.jastp.2010.04.015

[4]   J. L. Lean and D. H. Rind, “How Natural and Anthropogenic Influences Alter Global and Regional Surface Temperatures: 1889 to 2006,” Geophysical Research Letters, Vol. 35, No. 18, 2008, Article ID: L18701. doi:10.1029/2008GL034864

[5]   J. L. Lean and D. H. Rind, “How Will Earth’s Surface Temperature Change in Future Decades?” Geophysical Research Letters, Vol. 36, No. 15, 2009, Article ID: L15708. doi:10.1029/2009GL038932

[6]   A. A. Tsonis, K. Swanson and S. Kravtsov, “A New Dynamical Mechanism for Major Climate Shifts,” Geophysical Research Letters, Vol. 34, 2007, Article ID: L13705. doi:10.1029/2007GL030288

[7]   P. D. Jones, D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon and C. P. Morice, “Hemispheric and Large-Scale Land Surface Air Temperature Variations: An Extensive Revision and an Update to 2010,” Journal of Geophysical Research, Vol. 16, No. 1, 2012, pp. 206-223.

[8]   R. Rohde, J. Curry, D. Groom, R. Jacobsen, R. A. Muller, S. Perlmutter, A. Rosenfeld, C. Wickham and J. Wurtele, “Berkeley Earth Temperature Averaging Process,” 2011.

[9]   H. Theil, “Economic Forecasts and Policy,” North Holland, Amsterdam, 1961.

[10]   H. J. Lüdecke, R. Link and F. K. Ewert, “How Natural Is the Recent Centennial Warming? An Analysis of 2249 Surface Temperature Records,” International Journal of Modern Physics, Vol. 22, No. 10, 2011, pp. 1139-1159. doi:10.1142/S0129183111016798

[11]   K. L. Swanson and A. A. Tsonis, “Has the Climate Recently Shifted?” Geophysical Research Letters, Vol. 36, 2009, Article ID: L06711. doi:10.1029/2008GL037022

[12]   I. A. Eckley, P. Fearnhead and R. Killick, “Analysis of Change-Point Models,” In: D. Barber, A. Taylan Cemgil and S. Chiappa, Eds., Bayesian Time Series Models, Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511984679.011

[13]   K. Vasko and H. Toivonen, “Estimating the Number of Segments in Time Series Data Using Permutation Tests,” The 2002 IEEE International Conference on Data Mining (ICDM’02), Maebashi City, December 2002, pp. 466-473.

[14]   S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol. 220, No. 4598, 1983, pp. 671-680. doi:10.1126/science.220.4598.671

[15]   G. Bhanot, “The Metropolis Algorithm,” Reports on Progress in Physics, Vol. 51, No. 3, 1988, pp. 429-457. doi:10.1088/0034-4885/51/3/003

[16]   W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Section 10.12. Simulated Annealing Methods,” In: Numerical Recipes: The Art of Scientific Computting, 3rd Edition, Cambridge University Press, New York, 2007.

[17]   D. Gibert and J.-L. Le Mouel, “Inversion of Polar Motion Data: Chandler Wobble, Phase Jumps, and Geomagnetic Jerks,” Journal of Geophysical Research, Vol. 113, 2008, Article ID: B10405. doi:10.1029/2008JB005700

[18]   C. de Jager and S. Duhau, “Forecasting the Parameters of Sunspot Cycle 24 and Beyond,” Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 71, No. 2, 2009, pp. 239-245. doi:10.1016/j.jastp.2008.11.006

[19]   C. T. Russell, J. G. Luhmann and L. K. Jian, “How Unprecedented a Solar Minimum?” Reviews of Geophysics, Vol. 48, 2004, Article ID: RG2004.

[20]   J. A. Abreu, J. Beer, A. Ferriz-Mas, K. G. McCracken and F. Steinhilber, “Is There a Planetary Influence on Solar Activity?” Astronomy & Astrophysics, Vol. 548, 2012, Article ID: A88. doi:10.1051/0004-6361/201219997