Back
 JMP  Vol.4 No.7 , July 2013
Mathematical Derivation of Angular Momenta in Quantum Physics
Abstract: For a two-dimensional complex vector space, the spin matrices can be calculated directly from the angular momentum commutator definition. The 3 Pauli matrices are retrieved and 23 other triplet solutions are found. In the three-dimensional space, we show that no matrix fulfills the spin equations and preserves the norm of the vectors. By using a Clifford geometric algebra it is possible in the four-dimensional spacetime (STA) to retrieve the 24 different spins 1/2. In this framework, spins 1/2 are rotations characterized by multivectors composed of 3 vectors and 3 bivectors. Spins 1 can be defined as rotations characterized by 4 vectors, 6 bivectors and 4 trivectors which result in unit multivectors which preserve the norm. Let us note that this simple derivation retrieves the main spin properties of particle physics.
Cite this paper: D. Grucker, "Mathematical Derivation of Angular Momenta in Quantum Physics," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 930-939. doi: 10.4236/jmp.2013.47125.
References

[1]   J. Frohlich, “Spin or Actually: Spin and Quantum Statistics p1-60 in The Spin, Poincaré Seminar 2007,” B. Duplantier, J. M. Raimond and V. Rivasseau, Eds., Birkhauser, Basel, 2009.

[2]   C. Cohen-Tannoudji, B. Diu and F. Laloe, “Quantum Mechanics,” Wiley, New York, 1977.

[3]   P. A. M. Dirac, “The Principles of Quantum Mechanics,” Oxford University Press, Oxford, 1930, pp. 157-162,281-285.

[4]   D. Hestenes, American Journal of Physics, Vol. 47, 1979, p. 399. doi:10.1119/1.11806

[5]   D. Hestenes, American Journal of Physics, Vol. 71, 2003, pp. 691-714. doi:10.1119/1.1571836

[6]   D. Hestenes, American Journal of Physics, Vol. 71, 2003, pp. 104-121. doi:10.1119/1.1522700

[7]   S. Gull, A. Lasenby and C. Doran, Foundations of Physics, Vol. 23, 1993, pp. 1175-1201. doi:10.1007/BF01883676

[8]   C. Doran, A. Lasenby and S. Gull, Foundations of Physics, Vol. 23, 1993, pp. 1239-1264. doi:10.1007/BF01883678

[9]   J. Lasenby, A. N. Lasenby and C. J. L. Doran, Philosophical Transactions of the Royal Society A, Vol. 358, 2000, pp. 21-39. doi:10.1098/rsta.2000.0517

 
 
Top