Back
 AJAC  Vol.4 No.7 A , July 2013
Biosorption of Cadmium Ions by Unmodified, Microwave and Ultrasound Modified Brewery and Pure Strain Yeast Biomass
Abstract: The present study investigates the biosorption of cadmium ions from aqueous solution onto unmodified, ultrasound and microwave treated cells of Saccharomyces cerevisiae. FTIR analysis was conducted to characterize the biosorbent. Equilibrium and kinetic studies of unmodified RBW (residual brewery waste) cell yeast and DSM 1333 (pure strain) were conducted by considering the effect of initial cadmium ions concentration. Results showed that the ultrasound and microwave treatments decrease the heavy metal uptake compared with the unmodified biomass. Langmuir and Freundlich isotherm models on both unmodified yeast cell types were used to analyze the equilibrium data. It was found that the Langmuir isotherm and pseudo-second-order kinetics models describe better the cadmium ions removal process.
Cite this paper: B. Nagy, S. Tonk, C. Indolean, A. Măicăneanu and C. Majdik, "Biosorption of Cadmium Ions by Unmodified, Microwave and Ultrasound Modified Brewery and Pure Strain Yeast Biomass," American Journal of Analytical Chemistry, Vol. 4 No. 7, 2013, pp. 63-71. doi: 10.4236/ajac.2013.47A009.
References

[1]   [1] P. L. Bishop, “Pollution Prevention: Fundamentals and Practice,” Tsinghua University Press, Beijing, 2002.

[2]   B. Volesky, “Biosorption and Biosorbents,” In: B. Volesky, Ed., Biosorption of Heavy Metals, CRC Press, Boca Raton, 1990, pp. 3-5.

[3]   D. Brady, A. Stoll and F. R. Duncan, “Biosorption of Heavy Metal Cations by Nonviable Yeast Biomass,” Environmental Technology, Vol. 15, No. 5, 1994, pp. 419-428. doi:10.1080/09593339409385447

[4]   P. Chakravarty, N. S. Sarma and H. P. Sarma, “Biosorption of Cadmium (II) from Aqueous Solution Using Hearwood Powder of Areca Catechu,” Chemical Engineering Journal, Vol. 162, No. 3, 2010, pp. 949-955. doi:10.1016/j.cej.2010.06.048

[5]   A. M. El-Kamash, A. A. Zaki and M. Abed El Geleel, “Modeling Batch Kinetics and Thermodynamics of Zinc and Cadmium Ions Removal from Waste Solutions Using Synthetic Zeolite A,” Journal of Hazardous Materials, Vol. 127, No. 1-3, 2005, pp. 211-220. doi:10.1016/j.jhazmat.2005.07.021

[6]   R. Vimala and N. Das, “Biosorption of Cadmium (II) and Lead (II) from Aqueous Solutions Using Mushrooms: A Comparative Study,” Journal of Hazardous Materials, Vol. 168, No. 1, 2009, pp. 376-382. doi:10.1016/j.jhazmat.2009.02.062

[7]   M. J. Melgar, J. Alonso and M. A. García, “Removal of Toxic Metals from Aqueous Solutions by Fungal Biomass of Agaricus macrosporus,” Science of the Total Environment, Vol. 385, No. 1-3, 2007, pp. 12-19. doi:10.1016/j.scitotenv.2007.07.011

[8]   A. Witek-Krowiak, “Analysis of Temperature-Dependent Biosorption of Cu2+ Ions on Sunflower Hulls: Kinetics, Equilibrium and Mechanism of the Process,” Chemical Engineering Journal, Vol. 192, 2012, pp. 13-20. doi:10.1016/j.cej.2012.03.075

[9]   Y. Liu, Q. Cao, F. Luo and J. Chen, “Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ Ions from Aqueous Solutions by Pretreated Biomass of Brown Algae,” Journal of Hazardous Materials, Vol. 163, No. 2-3, 2009, pp. 931-938. doi:10.1016/j.jhazmat.2008.07.046

[10]   Sz. Tonk, A. Maicaneanu, C. Indolean, S. Burca and C. Majdik, “Application of Immobilized Waste Brewery Yeast Cells for Cd2+ Removal. Equilibrium and Kinetics,” Journal of the Serbian Chemical Society, Vol. 76, No. 3, 2011, pp. 363-373. doi:10.2298/JSC100527032T

[11]   A. Ahmad, M. Rafatullah and M. Danish, “Sorption Studies of Zn(II)and Cd(II) Ions from Aqueous Solution on Treated Sawdust of Sissoowood,” Holz als Rohund Werkstoff, Vol. 65, No. 6, 2007, pp. 429-436. doi:10.1007/s00107-007-0175-7

[12]   R. Hana, H. Li, Y. Li, J. Zhang, H. Xiao and J. Shi, “Biosorption of Copper and Lead Ions by Waste Beer Yeast,” Journal of Hazardous Materials, Vol. 137, No. 3, 2006, pp. 1569-1576. doi:10.1016/j.jhazmat.2006.04.045

[13]   B. D. Trivedi and K. C. Patel, “Biosorption of Hexavalent Chromium from Aqueous Solution by a Tropical Basidiomycete BDT-14 (DSM 15396),” World Journal of Microbiology Biotechnology, Vol. 23, No. 5, 2007, pp. 683-689. doi:10.1007/s11274-006-9284-4

[14]   Y. Goksungur, S. Uren and U. Guvenc, “Biosorption of Cadmium and Lead Ions by Ethanol Treated Waste Baker’s Yeast Biomass,” Bioresource Technology, Vol. 96, No. 1, 2005, pp. 103-109. doi:10.1016/j.biortech.2003.04.002

[15]   R. P. Han, L. Zhu, J. S. Yin, X. P. Wu and Y. H. Li, “Zinc Cation Biosorping Studies by Yeast,” Journal of Zhengzhou University, Vol. 31, 1999, pp. 76-79.

[16]   S. Marcellino, H. Attar, D. Lièvremont, M.-C. Lett, F. Barbierd and F. Lagardea, “Heat-Treated Saccharomyces cerevisiae for Antimony Speciation and Antimony(III) Preconcentration in Water Samples,” Analytica Chimica Acta, Vol. 629, No. 1-2, 2008, pp. 73-83. doi:10.1016/j.aca.2008.09.031

[17]   Y. F. Huang, W. H. Kuan, S. L. Lo and C. F. Lin., “Total Recovery of Resources and Energy from Rice Straw Using Microwave-Induced Pyrolysis,” Bioresource Technologies, Vol. 99, No. 17, 2008, pp. 8252-8258. doi:10.1016/j.biortech.2008.03.026

[18]   E. V. Rokhina, P. Lens and J. Virkutyte, “Low-Frequency Ultrasound in Biotechnology: State of the Art,” Trends in Biotechnology, Vol. 27, No. 5, 2009, pp. 298-306. doi:10.1016/j.tibtech.2009.02.001

[19]   K. S. Suslick, “Sonochemistry,” Science, Vol. 247, No. 4949, 2009, pp. 1439-1445. doi:10.1126/science.247.4949.1439

[20]   B. Yasemin and T. Zeki, “Removal of Heavy Metals from Aqueous Solution by Sawdust Adsorption,” Journal of Environmental Sciences, Vol. 19, No. 2, 2007, pp. 160166. doi:10.1016/S1001-0742(07)60026-6

[21]   Y. S. Ho and G. McKay, “The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat,” Water Research, Vol. 34, No. 3, 2000, pp. 735-742. doi:10.1016/S0043-1354(99)00232-8

[22]   I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” Journal of the American Chemical Society, Vol. 40, No. 9, 1918, pp. 1361-1367. doi:10.1021/ja02242a004

[23]   H. M. F. Freundlich, “Über die Adsorption in Lösungen,” Zeitschrift für Physikalische Chemie, Vol. 57A, 1906, pp. 385-470.

[24]   S. Marcellino, H. Attar, D. Lievremont, M.-C. Lett, F. Barbier and F. Lagarde, “Heat-Treated Saccharomyces cerevisiae for Antimony Speciation and Antimony(III) Preconcentration in Water Samples,” Analytica Chimica Acta, Vol. 629, No. 1-2, 2008, pp. 73-83. doi:10.1016/j.aca.2008.09.031

[25]   F. M. Klis, P. Mol, K. Hellingwerf and S. Brul, “Dynamics of Cell Wall Structure in Saccharomyces cerevisiae,” FEMS Microbiology Reviews, Vol. 26, No. 3, 2002, p. 239. doi:10.1111/j.1574-6976.2002.tb00613.x

[26]   I.-S. Woo, I.-K. Rhee and H.-D. Park, “Differential Damage in Bacteria Cells by Microwave Radiation on Basis of Cell Structure,” Applied and Environmental Microbiology, Vol. 66, No. 5, 2000, pp. 2243-2247. doi:10.1128/AEM.66.5.2243-2247.2000

[27]   S. Al-Asheh and Z. Duvnjak, “Adsorption of Copper and Chromium by Aspergillus carbonarius,” Biotechnology Progress, Vol. 11, No. 6, 1995, p. 638. doi:10.1021/bp00036a006

[28]   E. Lopez-Errasquin and C. Vasquez, “Tolerance and Uptake of Heavy Metals by Trichoderma atroviride Isolated from Sludge,” Chemosphere, Vol. 50, No. 1, 2003, pp. 137-143. doi:10.1016/S0045-6535(02)00485-X

[29]   E. Burattini, M. Cavagna, R. Dell’Anna, F. M. Campegi, F. Monti, F. Rossi and S. Torriani, “A FTIR Microspectroscopy Study of Autolysis in Cells of the Wine Yeast Saccharomyces cerevisiae,” Vibrational Spectroscopy, Vol. 47, No. 2, 2008, pp. 139-147. doi:10.1016/j.vibspec.2008.04.007

[30]   Z. Lin, J. Wu, R. Xue and Y. Yang, “Spectroscopic Characterization of Au3+ Biosorption by Waste Biomass of Saccharomyces cerevisiae,” Spectrochimica Acta, Vol. 61, No. 4, 2005, pp. 761-765. doi:10.1016/j.saa.2004.03.029

[31]   R. M. Silverstein, G. C. Bassler and T. C. Morill, “Infrared Spectrometry,” In: D. Sawicki and J. Stiefel, Eds., Spectrometric Identification of Organic Compounds, 5th Edition, John Wiley & Sons, New York, 1991, p. 125.

 
 
Top