AM  Vol.4 No.7 A , July 2013
On Isoperimetric Inequalities of Riesz Potentials and Applications
In this article, we prove certain isoperimetric inequalities for eigenvalues of Riesz potentials and show some applications of the results to a non-local boundary value problem of the Laplace operator.

Cite this paper
T. Kalmenov, E. Nysanov and B. Sabitbek, "On Isoperimetric Inequalities of Riesz Potentials and Applications," Applied Mathematics, Vol. 4 No. 7, 2013, pp. 1-4. doi: 10.4236/am.2013.47A001.

[1]   J. W. Rayleigh, “The Theory of Sound,” Dover Publishing, New York, 1945.

[2]   A. Henrot, “Extremum Problems for Eigenvalues of Elliptic Operators,” Birkhauser, Basel, 2006.

[3]   D. Daners, “A Faber—Krahn Inequality for Robin Problems in Any Space Dimension,” Mathematische Annalen, Vol. 335, 2006, pp. 767-785. doi:10.1007/s00208-006-0753-8

[4]   T. Sh. Kalmenov and D. Suragan, “Boundary Conditions for the Volume Potential for the Polyharmonic Equation,” Differential Equations, Vol. 48, No. 4, 2012, pp. 595-599.

[5]   A. Burchard, “A Short Course on Rearrangement Inequalities,” 2009.

[6]   F. Riesz, “Sur Une Inregalitre Intregrale,” Journal of the London Mathematical Society, Vol. 5, No. 3, 1930, pp. 162-168. doi:10.1112/jlms/s1-5.3.162

[7]   B. S. Vladimirov, “Equations of Mathematical Physics,” Nauka, Moscow, 1981.

[8]   N. S. Landkoff, “Foundations of Modern Potential Theory,” Springer-Verlag, Berlin, 1972. doi:10.1007/978-3-642-65183-0

[9]   B. Dittmar, “Sums of Reciprocal Eigenvalues of the Laplacian,” Mathematische Nachrichten, Vol. 237, No. 1, 2002, pp. 45-61. doi:10.1002/1522-2616(200204)237:1<45::AID-MANA45>3.0.CO;2-M

[10]   T. Sh. Kalmenov and D. Suragan, “To Spectral Problems for the Volume Potential,” Doklady Mathematics, Vol. 428, No. 1, 2009, pp. 16-19.