ABB  Vol.4 No.7 B , July 2013
Antibacterial activity of plant methanolic extracts on a field isolate of Pseudomonas syringae pvtomato from the Casablanca region (Morocco)
Abstract: A bacterial field isolate recovered from infected tomato plants in a green-house at Sidi Rehal, a region near Casablanca city (Morocco), was identified as the gammaproteobacterium Pseudomonas syringae pv. tomato DC3000 strain, the causal agent of bacterial speck. The bacterial isolate was characterized by morphological, biochemical and molecular biological tests, its growth curves carried out in various culture media, and its phytopathogenicity verified by infection tests. A screening was performed to evaluate the antibacterial activity of methanolic extracts of 12 selected Moroccan plants against the P. syringae pv. tomato DC3000 isolate, and Agar-well diffusion and Broth microdilution methods were used to determine minimum inhibitory and minimum bactericidal concentrations. Among the methanolic extracts tested, only those of Nigella sativa, Geranuim robertianum, Aizoon canariense and Rubia peregrine showed clear inhibitory and bactericidal activities, although the highest values were achieved with N. sativa, a plant used in Morocco as a spice, condiment and medicinal treatment.
Cite this paper: Elkhalfi, B. , Essari, A. , Serrano, A. and Soukri, A. (2013) Antibacterial activity of plant methanolic extracts on a field isolate of Pseudomonas syringae pvtomato from the Casablanca region (Morocco). Advances in Bioscience and Biotechnology, 4, 1-9. doi: 10.4236/abb.2013.47A2001.

[1]   Akesbi, N. (2006) évolution et perspectives de l’agriculture marocaine. Rapport 50 Ans De Développement Humain Et Perspectives, 2025, 85-198.

[2]   The Ministry of Agriculture and Maritime Fisheries of Morocco (2010) Moroccan agriculture in number.

[3]   Stavrinides, J. (2009) Origin and evolution of phytopathogenic bacteria. Caister Academic Press, Norfolk.

[4]   Hernández Suárez, M., Rodríguez Rodríguez, E.M. and Díaz Romero, C. (2008) Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chemistry, 106, 1046-1056. doi:10.1016/j.foodchem.2007.07.025

[5]   Olaniyi, J.O., Akanbi, W.B., Adejumo, T.A. and Akande, O.G. (2010) Growth fruit yield and nutritional quality of tomato varieties. African Journal of Food Science, 4, 398-402.

[6]   Bashan, Y. and De-Bashan, L.E. (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 68, 2637-2643. doi:10.1128/AEM.68.6.2637-2643.2002

[7]   Pérez-García, A., Cánovas, F.M., Gallardo, F., Hirel, B. and Vicente, A. (1995) Differential expression of glutamine synthetase isoforms in tomato detached leaflets infected with Pseudomonas syringae pv. tomato. MPMIMolecular Plant Microbe Interactions, 8, 96-103. doi:10.1094/MPMI-8-0096

[8]   Das, S., Ramm, M., Kochanowski, H. and Basu, S. (1994) Structural studies of the side chain of outer membrane lipopolysaccharide from Pseudomonas syringae pv. coriandricola W-43. Journal of Bacteriology, 176, 65506557.

[9]   Kvitko, B.H., et al. (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathogens, 5, e1000388. doi:10.1371/journal.ppat.1000388

[10]   Rico, A. and Preston, G.M. (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21, 269-282. doi:10.1094/MPMI-21-2-0269

[11]   Schneider, R.W. and Grogan, R.G. (1977) Tomato leaf trichomes, a habitat for resident populations of Pseudomonas syringae pv tomato DC3000. Phytopathology, 67, 898-902. doi:10.1094/Phyto-67-898

[12]   Bashan, Y., Okon, Y. and Henis, Y. (1985) Detection of cutinases and pectic enzymes during infection of tomato by Pseudomonas syringae pv. tomato. Phytopathology, 75, 940. doi:10.1094/Phyto-75-940

[13]   Cuppels, D.A. and Elmhirst, J. (1999) Disease development and changes in the natural Pseudomonas syringae pv. tomato populations on field tomato plants. Plant Disease, 83, 759-764. doi:10.1094/PDIS.1999.83.8.759

[14]   Fouts, D.E., et al. (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proceedings of the National Academy of Sciences, 99, 2275-2280. doi:10.1073/pnas.032514099

[15]   Wright, C.A. and Beattie, G.A. (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 3269-3274. doi:10.1073/pnas.0400461101

[16]   Buell, C.R., et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences, 100, 10181-10186. doi:10.1073/pnas.1731982100

[17]   Feil, H., et al. (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 102, 11064-11069. doi:10.1073/pnas.0504930102

[18]   King, E.O., Ward, M.K. and Raney, D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301-307.

[19]   Bergey, D.H. and Holt, J.G. (1994) Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins, Philadelphia.

[20]   Boone, D.R., Brenner, D.J., Vos, P.D., Garrity, G.M., Goodfellow, M., Staley, J.T. and Krieg, N.R. (2007) Bergey’s manual of systematic bacteriology: The proteobacteria: Part A introductory essays; part B the gammaproteobacteria; part C the alpha-, beta-, delta-, and epsilonproteobacteria. Springer, Berlin.

[21]   Klement, Z. and Rudolph, K. (1990) Methods in phytobacteriology. Akadémiai Kiadó.

[22]   Lelliott, R.A. and Stead, D.E. (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford.

[23]   Kovacs, N. (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction.

[24]   Ignjatov, M., Milovsevic, M., Nikolic, Z., Vujakovic, M. and Petrovic, D. (2007) Characterization of Pseudomonas savastanoi pv. glycinea isolates from Vojvodina. Phytopathologia Polonica, 43-54

[25]   Klement, Z. (1963) Rapid detection of the pathogenicity of phytopathogenic pseudomonads.

[26]   Maniatis, T. (1989) Molecular cloning: A laboratory manual. In: Sambrook, J., Fritsch, E.F. and Maniatis, T., Eds., Cold Spring Harbor Laboratory Press, New York.

[27]   Wikler, M.A. (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. Clinical and Laboratory Standards Institute.

[28]   Preston, G.M. (2001) Pseudomonas syringae pv. tomato: The right pathogen, of the right plant, at the right time. Molecular Plant Pathology, 1, 263-275. doi:10.1046/j.1364-3703.2000.00036.x

[29]   Vos, P., et al. (2009) Bergey’s manual of systematic bacteriology: Volume 3, the firmicutes. Springer, Berlin.

[30]   Milijasevic, S., Todorovic, B., Rekanovic, E., Potocnik, I. and Gavrilovic, V. (2009) Races and hosts of Pseudomonas syringae pv. tomato in Serbia. Archives of Biological Sciences, 61, 93-103. doi:10.2298/ABS0901093M

[31]   Bultreys, A. and Kaluzna, M. (2010) Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. Journal of Plant Pathology, 92, S1-S21

[32]   Arsenijevic, M. and Jovanovic, O. (1993) Pseudomonas syringae pv. tomato parazit rasada paradajza.

[33]   Friedemann, T.E. (1939) Metabolism of pathogenic bacteria growing under aerobic conditions in carbohydraterich culture media. Proceedings of the Society for Experimental Biology and Medicine, 40, 505-509.

[34]   Jacobs, J.M., Babujee, L., Meng, F., Milling, A. and Allen, C. (2012) The in planta transcriptome of ralstonia solanacearum: Conserved physiological and virulence strategies during bacterial wilt of tomato. mBio, 3, e00114. doi:10.1128/mBio.00114-12

[35]   Kothari, V., Naraniwal, M. and Gupta, A. (2011) Effect of certain phytochemicals on Aeromonas hydrophila. Research Journal of BioTechnology, 2, 20-25

[36]   Nanasombat, S. and Lohasupthawee, P. (2005) Antibacterial activity of crude ethanolic extracts and essential oils of spices against salmonellae and other enterobacteria. KMITL Science and Technology Journal, 5, 527-538.

[37]   Gupta, V.K., Singh, G.D., Singh, S. and Kaul, A. (2010) Medicinal plants: Phytochemistry, pharmacology and therapeutics, Volume 1. Daya Publishing House, Delhi.

[38]   Adwan, K. and Abu-Hasan, N. (1998) Gentamicin resistance in clinical strains of Enterobacteriaceae associated with reduced gentamicin uptake. Folia Microbiologica, 43, 438-440. doi:10.1007/BF02818588

[39]   Lopez, P., Sanchez, C., Batlle, R. and Nerin, C. (2005) Solid-and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. Journal of Agricultural and Food Chemistry, 53, 6939-6946. doi:10.1021/jf050709v

[40]   Arici, M., Sagdic, O. and Gecgel, U. (2005) Antibacterial effect of Turkish black cumin (Nigella sativa L.) oils. Grasas y Aceites, 56, 259-262. doi:10.3989/gya.2005.v56.i4.90

[41]   Akgul, A. (1989) Antimicrobial activity of black cumin (Nigella sativa L.) essential oil. Gazi Universitesi Eczacilik Fakultesi Dergisi, 6, 63-68.

[42]   Khan, M.A.U., Ashfaq, M.K., Zuberi, H.S., Mahmood, M.S. and Gilani, A.H. (2003) The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. Phytotherapy Research, 17, 183-186. doi:10.1002/ptr.1146

[43]   Salman, M.T., Khan, R.A. and Shukla, I. (2008) Antimicrobial activity of Nigella sativa Linn. seed oil against multi-drug resistant bacteria from clinical isolates. Natural Product Radiance, 7, 10-14.

[44]   Nair, S.C., Salomi, M.J., Panikkae, B. and Panikkar, K.R. (1991) Modulatory effects of Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in mice. Journal of Ethnopharmacology, 31, 75-83. doi:10.1016/0378-8741(91)90146-5

[45]   Bamosa, A.O., Ali, B.A. and Sowayan, S.A. (1997) Effect of oral ingestion Nigella sativa seeds on some blood parameters. Saudi Pharmaceutical Journal, 5, 126-129.

[46]   Al-Ghamdi, M.S. (2001) The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology, 76, 45-48. doi:10.1016/S0378-8741(01)00216-1

[47]   Badary, O.A. and El-Din, A.M.G. (2001) Inhibitory effects of thymoquinone against 20-methylcholanthreneinduced fibrosarcoma tumorigenesis. Cancer Detection and Prevention, 25, 362-368.

[48]   Houghton, P.J., Zarka, R., De las Heras, B. and Hoult, J.R.S. (2007) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta medica, 61, 33-36. doi:10.1055/s-2006-957994

[49]   Morsi, N.M. (2000) Antimicrobial effect of crude extracts of Nigella sativa on multiple antibiotics-resistant bacteria. Acta Microbiologica Polonica, 49, 63-74.

[50]   Salem, M.L. and Hossain, M.S. (2000) Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. International Journal of Immunopharmacology, 22, 729-740. doi:10.1016/S0192-0561(00)00036-9

[51]   Kamal, A., Arif, J.M. and Ahmad, I.Z. (2010) Potential of Nigella sativa L. seed during different phases of germination on inhibition of bacterial growth. E3 Journal of Biotechnology and Pharmaceutical Research, 1, 9-13.

[52]   Akhtar, N., Alakloby, O.M., Aljabre, S.H.M., Alqurashi, A.R.M. and Randhawa, M.A. (2007) Comparison of antifungal activity of thymoquinone and amphotericin B against Fusarium solani in vitro. Scientific Journal of King Faisal University (Basic and Applied Sciences), 8, 1428H

[53]   Halawani, E. (2009) Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. Advances in Biological Research, 3, 148-152.

[54]   Randhawa, M.A. and Al-Ghamdi, M.J. (2002) A review of pharmaco therapeutic effect of Nigella sativa. Pakistan Journal of Medical Research, 41, 77-83.