Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review

Affiliation(s)

Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.

Mechanical Engineering Department, Faculty of Engineering; Kafrelsheikh University, Kafelsheikh, Egypt;Mechanical Engineering Department, Faculty of Engineering, Islamic University, Madina, KSA.

Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafelsheikh, Egypt.

Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.

Mechanical Engineering Department, Faculty of Engineering; Kafrelsheikh University, Kafelsheikh, Egypt;Mechanical Engineering Department, Faculty of Engineering, Islamic University, Madina, KSA.

Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafelsheikh, Egypt.

ABSTRACT

Solar humidification-dehumidification desalination technology has been reviewed in detail in this paper. This review would also throw light on the scope for further research and recommendations in active distillation system by humidification and dehumidification (HDH). Also in this article, a review has been done on different types of (HDH) systems. Thermal modeling was done for various types of humidification and dehumidification(HDH) distillation system. From the present review, it is found that the humidification-dehumidification desalination process HDH will be a suitable choice for fresh water production when the demand is decentralized. HDH is a low temperature process where total required thermal energy can be obtained from solar energy. Capacity of HDH units is between that produced by conventional methods and solar stills. Moreover, HDH is distinguished by simple operation and maintenance. Also from the present condensed review, it was observed that an increase in evaporator and condenser surface areas significantly improves system productivity. But prior to implementing any techniques in design improvement, it is necessary to optimize the MEH unit by optimizing its component size to understand the effect of feed water and air flow rates. Although a fair amount of simulation studies have been conducted in the past, further design simulation is required to fully understand the complicated effects of air and water flow rates, the optimum size of individual components or modules of the unit and to generate a comprehensive model for the system.

Cite this paper

A. Kabeel, M. Hamed, Z. Omara and S. Sharshir, "Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review,"*Natural Resources*, Vol. 4 No. 3, 2013, pp. 286-305. doi: 10.4236/nr.2013.43036.

A. Kabeel, M. Hamed, Z. Omara and S. Sharshir, "Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review,"

References

[1] J. Bendfeld, Ch. Broker, K. Menne, E. Ortjohann, L. Temme, J. Vob and P. C. M. Carvallo, “Design of a PV-Powered Reverse Osmosis Plant for Desalination of Brackish Water,” Proceedings of 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 6-10 July 1998, pp. 3075-3077.

[2] S. Kalogirou, “Economic Analysis of a Solar Assisted Desalination System,” Renewable Energy, Vol. 12, No. 4, 1997, pp. 351-367. doi:10.1016/S0960-1481(97)00063-3

[3] R. M. Morris and W. T. Hanbury, “Predication of Critical Desalination Parameters Using Radial Basis Functions Network,” Proceedings of the New Technologies for the Use of Renewable Energy Sources in Water Desalination, Sec.I, Athens, 1991, pp. 30-50.

[4] N. Kh. Nawayseh, M. Farid, S. Al-Hallaj and A. R. Al-Timimi, “Solar Desalinate Heat Ion Based on Humidification Process-I and Mass Transfer Coefficients,” Energy Conversion and Management, Vol. 40, No. 13, 1999, pp. 1423-1439. doi:10.1016/S0196-8904(99)00018-7

[5] A. E. Kabeel and M. S. Emad El Said, “A Hybrid Solar Desalination System of Air Humidification Dehumidification and Water Flashing Evaporation Part I. A Numerical Investigation,” Sixteen International Water Technology Conference, IWTC16, Istanbul, 7-10 May 2012.

[6] R. E. Treybal, “Mass Ttansfer Operation,” McGraw-Hill, NewYork, 1980.

[7] F. Kreith and R. F. Boehm, “Direct Contact Heat Transfer,” Hemisphere Corp., Washington, 1988.

[8] M. A. Younis, M. A. Darwish and F. Juwayhel, “Experimental and Theoretical Study of a Humidification-Dehumidification esalting System,” Desalination, Vol. 94, No. 1, 1993, pp. 11-24, doi:10.1016/0011-9164(93 80151-C

[9] J. Orfi, M. Laplante, H. Marmouch, N. Galanis, B. Benhamou, S. B. Nasrallah and C. T. Nguyen, “Experimental and Theoretical Study of a Humidification-Dehumidification Water Desalination System Using Solar Energy,” Desalination, Vol. 168, 2004, pp. 151-159. doi:10.1016/j.desal.2004.06.181

[10] M. Ben Amara, I. Houcine, A. Guizani and M. Maalej, “Experimental Study of a Multipl-Effect Humidification Solar Desalination Technique,” Desalination, Vol. 170, No. 3, 2004, pp. 209-221.

[11] E. H. Amer, H. Kotb, G. H. Mostafa and A. R. El Ghalban, “Theoretical and Experimental Investigation of Humidification-Dehumidification Desalination Unit,” Desalination, Vol. 249, No. 3, 2009, pp. 949-959. doi:10.1016/j.desal.2009.06.063

[12] K. Zhania and H. B. Bacha, “Experimental Investigation of a New Solar Desalination Prototype Using the Humidification-Dehumidification Principle,” Renewable Energy, Vol. 35, No. 11, 2010, pp. 2610-2617. doi:10.1016/j.renene.2010.03.033

[13] A. S. Nafey, H. E. S. Fath, S. O. El-Helaby and A. M. Soliman, “Solar Desalination Using Humidification-Dehumidification Processes. Part II. An Experimental Investigation,” Energy Conversion and Management, Vol. 45, No. 7-8, 2004, pp. 1263-1277. doi:10.1016/S0196-890403 00152-3

[14] JJ. Hermosillo, C. A. Arancibia Bulnes and C. A. Estrada, “Water Desalination by Air Humidification: Mathematical Model and Experimental Study,” Solar Energy, Vol. 86, No. 4, 2011, pp. 1070-1076.

[15] C. Yamali and I. Solmusf, “A Solar Desalination System Using Humidification-Dehumidification Process: Experimental Study and Comparison with the Theoretical Results,” Desalination, Vol. 220, No. 1-3, 2008, pp. 538-551. doi:10.1016/j.desal.2007.01.054

[16] S. A. El-Agouz and M. Abugderah, “Experimental Analysis of Humidification Process by Air Passing through Seawater,” Energy Conversion and Management,Vol.49.No.12,2008,pp.3698-3703.doi:10.1016/j.enconman.2008.06.033

[17] A. Lydersen, “Mass Transfer in Engineering Practice,” John Wiley & Sons, Hoboken, 1985.

[18] H. Muller-Holst, M. Engelhardt, M. Herve and W. Scholkopf, “Solar Thermal Seawater Desalination Systems for Decentralised Use,” Renewable Energy, Vol. 14, No. 1-4, 1998, pp. 311-318. doi:10.1016/S0960-148198 00083-4

[19] J. S. Wallis and R. J. Aull, “Improving Cooling Tower Performance,” Hydrocarbon Engineering, 1999, pp. 92-95.

[20] G. F. Yuan and H. F. Zhang, “Mathematical Modeling of a Closed Circulation Solar Desalination Unit with Humidification-Dehumidification,” Desalination, Vol. 205, No. 1-3, 2007, pp. 156-162. doi:10.1016/j.desal.2006.03.550

[21] Y. J. Dai, R. Z. Wang and H. F. Zhang, “Parametric Analysis to Improve the Performance of a Solar Desalina- tion Unit with Humidification and Dehumidification,” Desalination, Vol. 142, No. 2, 2002, pp. 107-118. doi:10.1016/S0011-916401 00430-1

[22] Y. J. Dai and H. F. Zhang, “Experimental Investigation of a Solar Desalination Unit with Humidification and Dehumidification,” Desalination, Vol. 130, No. 2, 2000, pp. 169-175. doi:10.1016/S0011-916400 00084-9

[23] E. Chafik, “A New Type of Seawater Desalination Plants Using Solar Energy,” Desalination, Vol. 156, No. 1-3, 2003, pp. 333-348. doi:10.1016/S0011-916403 00364-3

[24] J. F. Klausner, R. Mei and Y. Li, “Innovative Fresh Water Production Process for Fossil Fuel Plants,” Annual Report, University of Florida, Gainesville, 2003, 58 Pages.

[25] G. Al-Enezi, H. Ettouney and N. Fawzy, “Low Temperature Humidification Dehumidification Desalination Process,” Energy Conversion and Management, Vol. 47, No. 4, 2006, pp. 470-484. doi:10.1016/j.enconman.2005.04.010

[26] M. Farida and A. W. Al-Hajajb, “Solar Desalination with Humidification Dehumidification Cycle,” Desalination, Vol. 106, No. 2, 1996, pp. 427-429.

[27] A. Eslamimanesh and M. S. Hatamipour, “Mathematical Modeling of a Direct Contact Humidification-Dehumidification Desalination Process,” Desalination, Vol. 237, No. 1-3, 2009, pp. 296-304. doi:10.1016/j.desal.2008.01.023

[28] Shaobo Hou and Hefei Zhang, “A Hybrid Solar Desalination Process of the Multi-Effect Humidification Dehumidification and Basin-Type Unit,” Desalination, Vol. 220, 2008, pp. 552-557. doi:10.1016/j.desal.2007.01.055

[29] S. Farsad and A. Behzadmehr, “Analysis of a Solar Desalination Unit with Humidification Dehumidification Cycle Using DOE Method,” Desalination, Vol. 278, No. 1-3, 2011, pp. 70-76. doi:10.1016/j.desal.2011.05.008

[30] M. Khedr, “Techno-Economic Investigation of an Air Humidification-Dehumidification Desalination Process,” Chemical Engineering Technology, Vol. 16, No. 4, 1993, pp. 270-274. doi:10.1002/ceat.270160410

[31] H. P. Garg, R. S. Adhikari and R. Kumar, “Experimental Design and Computer Simulation of Multi-Effect Humidification (MEH)-Dehumidification Solar Distillation,” Desalination, Vol. 153, No. 1-3, 2002, pp. 81-86.doi:10.1016/S0011-916402 01106-2

[32] S. Al-Hallaj, M. M. Farid and A. R. Tamimi, “Solar Desalination with Humidification-Dehumidification Cycle: Performance of the Unit,” Desalination, Vol. 120, No. 3, 1998, pp. 273-280. doi:10.1016/S0011-916498 00224-0

[33] H. Ben-Bacha, T. Damak and M. Bouzguenda, “Experimental Validation of the Distillation Module of a Desalination Station Using the SMCEC Principle,” Renewable Energy, Vol. 28, No. 15, 2003, pp. 2335-2354. doi:10.1016/S0960-148103 00167-8

[34] I. Houcine, M. B. Amara, A. Guizani and M. Maalej, “Pilot Plant Testing of a New Solar Desalination Process by a Multiple-Effect Humidification Technique,” Desalination, Vol. 196, No. 1-3, 2006, pp. 105-124. doi:10.1016/j.desal.2005.11.022

[35] G. R. Mirsky and J. Bauthier, “Evolution of Cooling Tower Fill,” CTI Journal, Vol. 14, No. 1, 1993, pp. 12- 19.

[36] R. J. Aull and T. Krell, “Design Features of Cross-Fluted Film Fill and Their Effect on Thermal Performance,” CTI Journal, Vol. 21, No. 2, 2000, pp. 12-33.

[37] J. C. Kloppers, “A Critical Evaluation and Refinement of the Performance Prediction of Wet-Cooling Towers,” PhD dissertation, University of Stellenbosch, Stellenbosch, 2003.

[38] D. G. Kroger, “Air-Cooled Heat Exchangers and Cooling Towers Thermal-Flow Performance Evaluation and Design, Vols. I and II,” Pen well Corp, Tulsa, 2004.

[39] F. C. McQuiston, “Finned Tube Heat Exchangers: State of the Art for the Air Side,” ASHRAE Transactions, Vol. 17, No. 1, 1980, pp. 14-15.

[40] D. G. Rich, “The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row, Smooth Plate Fin-and-Tube Heat Exchangers,” ASHRAE Transactions, Vol. 79, No. 2, 1973, pp. 137-145.

[41] D. G. Rich, “The Effect of the Number of Tube Rows on Heat Transfer Performance of Smooth Plate Fin-and-Tube Heat Exchangers,” ASHRAE Transactions, Vol. 81, No. 1, 1975, pp. 307-317.

[42] F. C. McQuiston, “Fin Efficiency with Combined Heat and Mass Transfer,” ASHRAE Transactions, Vol. 81, No. 1, 1975, pp. 350-355.

[43] F. E. M. Saboya and E. M. Sparrow, “Transfer Characteristics of Two-Row Plate Fin and Tube Heat Exchanger Configurations,” International Journal of Heat and Mass Transfer, Vol. 19, No. 1, 1976, pp. 41-49. doi:10.1016/0017-931076 90009-0

[44] F. C. McQuiston, “Heat Mass and Momentum Transfer Data for Five Plate-Fin Tube Transfer Surface,” ASHRAE Transaction Part 1, Vol. 84, No. 1, 1978, pp. 266-293.

[45] F. C. McQuiston, “Correlation of Heat, Mass and Momentum Transport Coefficients for Plate-Fin-Tube Heat Transfer Surfaces with Staggered Tubes,” ASHRAE Transaction, Vol. 84, No. 1, 1978, pp. 294-309.

[46] R. L. Webb, T. M. Rudy and M. A. Kedzierski, “Prediction of the Condensation Coefficient on Horizontal Integral-Fin Tubes,” Journal of Heat Transfer, Vol. 107, No. 2, 1985, pp. 369-376. doi:10.1115/1.3247424

[47] P. W. Eckels and T. J. Rabas, “Dehumidification: On the Correlation of Wet and Dry Transport Processes in Plate Finned-Tube Heat Exchangers,” Journal of Heat Transfer, Vol. 109, No. 3, 1987, pp. 575-582. doi:10.1115/1.3248127

[48] J. E. R. Coney, C. G. W. Sheppard and E. A. M. El-Shafei, “Fin Performance with Condensation from Humid Air: A Numerical Investigation,” International Journal of Heat and Fluid Flow, Vol. 10, No. 3, 1989, pp. 224-231.doi:10.1016/0142-727X89 90041-6

[49] A. M. Jacobi and V. W. Goldschmidt, “Low Reynolds Number Heat and Mass Transfer Measurements of an Overall Counterflow, Baffled, Finned-Tube, Condensing Heat Exchanger,” International Journal of Heat and Mass Transfer, Vol. 33, No. 4, 1990, pp. 755-765. doi:10.1016/0017-931090 90173-R

[50] D. R. Mirth and S. Ramadhyani, “Prediction of Cooling-Coil Performance under Condensing Conditions,” International Journal of Heat and Fluid Flow, Vol. 14, No. 4, 1993, pp. 391-400.

[51] D. R. Mirth and S. Ramadhyani, “Correlations for Predicting the Air-Side Nusselt Numbers and Friction Factors in Chilled-Water Cooling Coils,” Experimental Heat Transfer, Vol. 7, No. 2, 1994, PP. 143-162. doi:10.1080/08916159408946477

[52] W. L. Fu, C. C. Wang, W. R. Chang and C. T. Chang, “Effect of Anti-Corrosion Coating on the Thermal Characteristics of a Louvered Finned Tube Heat Exchangers Under Dehumidifying Conditions,” ASMEPUBLICATIONSHTD, Vol. 320, 1995, pp. 75-82.

[53] Y. Seshimo, K. Ogawa, K. Marumoto and M. Fujii, “Heat and Mass Transfer Performances on Plate Fin and Tube Heat Exchangers with Dehumidification,” Heat Transfer Japanese Research, Vol. 18, No. 5, 1989, pp. 79-94.

[54] G. Wu and T. Y. Bong, “Overall Efficiency of a Straight Fin with Combined Heat and Mass Transfer,” ASHRAE Transactions, Vol. 100, Pt. 1, 1994, pp. 367-374.

[55] M. Sen and K. T. Yang, “Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering,” CRC Handbook of Thermal Engineering, 2000, pp. 620-661.

[56] Zhao, X. McClain and R. L. Sen, “An Artificial Neural Network Model of Heat Exchanger,” Symposium of Thermal Science and Engineering in Honor of Chancellor Lin Tine, 1995, pp. 83-88.

[57] G. Diaz, M. Sen, K. T. Yang and R. L. McClain, “Simulation of Heat Exchanger Performance by Artificial Neural Networks,” International Journal of Heating Ventilating Air Conditioning and Refrigerating Research, Vol. 5, 1999, pp. 195-208.

[58] J. Y. Kim and T. H. Song, “Effect of Tube Alignment on the Heat Mass Transfer from a Plate Fin and Two-Tube Assembly: Naphthalene Sublimation Results,” International Journal of Heat and Mass Transfer, Vol. 46, No. 16, 2003, pp. 3051-3059. doi:10.1016/S0017-931003 00091-7

[59] M. S. Mon and U. Gross, “Numerical Study of Fin-Spacing Effects in Annular-Finned Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, Vol. 47, No. 8-9, 2004, pp. 1953-1964. doi:10.1016/j.ijheatmasstransfer.2003.09.034

[60] Y. Kim, “Heat Transfer Characteristics of Flat Plate Finned-Tube Heat Exchangers with Large Fin Pitch,” International Journal of Refrigeration, Vol. 28, No. 6, 2005, pp. 851-858. doi:10.1016/j.ijrefrig.2005.01.013

[61] G. Xie, Q. Wang and B. Sunden, “Parametric Study and Multiple Correlations on Air-Side Heat Transfer and Friction Characteristics of Fin and Tube Heat Exchangers with Large Number of Large Diameter Tube Rows,” Applied Thermal Engineering, Vol. 29, No. 1, 2009, pp. 1-16. doi:10.1016/j.applthermaleng.2008.01.014

[62] D. K. Yang, K. S. Lee and S. Song, “Fin Spacing Optimization of a Fin Tube Heat Exchanger under Frosting Conditions,” International Journal of Heat and Mass Transfer, Vol. 49, No. 15-16, 2006, pp. 2619-2625. doi:10.1016/j.ijheatmasstransfer.2006.01.016

[63] D. Q. Kern, “Process Heat Transfers,” Tata McGraw-Hill, Noida, 2002.

[64] T. Tinker, “Shell Side Characteristics of Shell and Tube Heat Exchangers, Parts I, II and III, General Discussion of Heat Transfer,” Proceedings of the Institution of Mechanical Engineers, London, 1951.

[65] K. J. Bell, “Final Report of the Cooperative Research Program on Shell and Tube Heat Exchangers,” Engineering Experimental Station Bulletin, Vol. 5, 1963.

[66] E. A. D. Saunders, “Heat Exchangers: Selection, Design & Construction,” Halsted Pr, Sydney, 1988.

[67] J. Taborek, “Recommended Method: Principles and Limitations,” In: G. F. Hewitt, Heat Exchanger Design Handbook, Begell House, New York, 2002.

[68] M. J. N. Wills, D. Johnston and A. Harwell, “A New and Accurate Hand Calculation Method for Shellside Pressure Drop and Flow Distribution,” American Society of Mechanical Engineers, 1984, p. 67.

[69] G. F. Hewitt, “Flow Stream Analysis Method for Segmentally Baffled Shell and Tube Heat Exchangers,” Heat Exchanger Design Handbook, 2002.

[70] M. Reppich and S. Zagermann, “A New Design Method for Segmentally Baffled Heat Exchangers,” Computers & Chemical Engineering, Vol. 19, No. 1, 1995, pp. 137-142. doi:10.1016/0098-135495 87028-8

[71] E. S. Gaddis and V. Gnielinski, “Pressure Drop on the Shell Side of Shell and Tube Heat Exchangers with Segmental Baffles,” Chemical Engineering and Processing, Vol. 36, No. 2, 1997, pp. 149-159. doi:10.1016/S0255-270196 04194-3

[72] E. S. Gaddis and V. Gnielinski, “Pressure Drop in Cross Flow across Tube Bundles,” International Chemical Engineering, Vol. 25, No. 1, 1985, pp. 1-15.

[73] H. Li and V. Kottke, “Local Heat Transfer in the First Baffle Compartment of the Shell and Tube Heat Exchangers for Staggered Tube Arrangement,” Experimental Thermal and Fluid Science, Vol. 16, No. 4, 1998, pp. 342-348. doi:10.1016/S0894-177797 10036-X

[74] H. Li and V. Kottke, “Visualization and Determination of Local Heat Transfer Coefficients in Shell and Tube Heat Exchangers for Staggered Tube Arrangement by Mass Transfer Measurements,” Experimental Thermal and Fluid Science, Vol. 17, No. 3, 1998, pp. 210-216. doi:10.1016/S0894-177797 10064-4

[75] H. Li and V. Kottke, “Effect of the Leakage on Pressure Drop and Local Heat Transfer in Shell and Tube Heat Exchangers for Staggered Tube Arrangement,” International Journal of Heat and Mass Transfer, Vol. 41, No. 2, 1998, pp. 425-434. doi:10.1016/S0017-931097 00112-9

[76] H. Li and V. Kottke, “Effect of Baffle Spacing on Pressure Drop and Local Heat Transfer in Shell and Tube Heat Exchangers for Staggered Tube Arrangement,” International Journal of Heat and Mass Transfer, Vol. 41, No. 10, 1998, pp. 1303-1311. doi:10.1016/S0017-931097 00201-9

[77] G. Diaz, M. Sen, T. Yang and R. L. McClain, “Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks,” International Journal of Heat and Mass Transfer, Vol. 44, No. 9, 2001, pp. 1671-1679. doi:10.1016/S0017-931000 00228-3

[78] M. Ayoubi, “Dynamic Multi-Layer Perceptron Networks: Application to the Nonlinear Identification and Predictive Control of a Heat Exchanger,” Applications of Neural Adaptive Control Technology, 1997, p. 205.

[79] K. Zhani, H. Ben Bacha and T. Damak, “Modeling and Experimental Validation of a Humidification-Dehumidification Desalination Unit Solar Part,” Energy, Vol. 36, No. 5, 2011, pp. 3159-3169. doi:10.1016/j.energy.2011.03.005

[80] M. Adel and M. Fatouh, “Experimental and Numerical Investigation of Humidification/Dehumidification Solar Water Desalination Systems,” Desalination, Vol. 247, 2009, pp. 594-609. doi:10.1016/j.desal.2008.12.039

[81] C. L. Gupta and H. P. Garg, “System Design in Solar Water Heaters with Natural Circulation,” Solar Energy, Vol. 12, No. 2, 1968, pp. 163-170. doi:10.1016/0038-092X68 90003-0

[82] K. S. Ong, “A Finite-Difference Method to Evaluate the Thermal Performance of a Solar Water Heater,” Solar Energy, Vol. 16, No. 3, 1974, pp. 137-147. doi:10.1016/0038-092X74 90010-3

[83] K. S. Ong, “An Improved Computer Program for the Thermal Performance of a Solar Water Heater,” Solar Energy, Vol. 18, No. 3, 1976, pp. 183-191, doi:10.1016/0038-092X76 90017-7

[84] A. I. Kudish, P. Santamaura and P. Beaufort, “Direct Measurement and Analysis of Thermosiphon Flow,” Solar Energy, Vol. 35, No. 2, 1985, pp. 167-173. doi:10.1016/0038-092X85 90006-4

[85] G. L. Morrison and J. E. Braun, “System Modeling and Operation Characteristics of Thermosyphon Solar Water Heaters,” Solar Energy, Vol. 34, No. 2, 1985, pp. 389-405. doi:10.1016/0038-092X85 90051-9

[86] P. A. Hobson and B. Norton, “A Design Monogram for Direct Thermosyphon Solar-Energy Water Heaters,” Solar Energy, Vol. 43, No. 2, 1989, pp. 85-95. doi:10.1016/0038-092X89 90150-3

[87] A. Shariah and B. Shalabi, “Optimal Design for a Ther- mosyphon Solar Water Heater,” Renewable Energy, Vol. 11, No. 3, 1997, pp. 351-361. doi:10.1016/S0960-148197 00005-0

[88] N. K. Nawayseh, M. M. Farid, A. A. Omar, S. M. Al- Hallaj and A. R. Tamimi, “A Simulation Study to Improve the Performance of a Solar Humidification-Dehumidification Desalination Unit Constructed in Jordan,” Desalination, Vol. 109, No. 3, 1997, pp. 277-284. doi:10.1016/S0011-916497 00074-X

[89] H. Ben Bacha, M. Bouzguenda, M. S. Abid and A. Y. Maalej, “Modeling and Simulation of a Water Desalination Station with Solar Multiple Condensation Evaporation Cycle Technique,” Renewable Energy, Vol. 18, No. 3, 1999, pp. 349-365. doi:10.1016/S0960-148198 00800-3

[90] M. M. Farid, S. Parekh, J. R. Selman and S. Al-Hallaj, “Solar Desalination with a Humidification-Dehumidification Cycle: Mathematical Modeling of the Unit,” Desalination, Vol. 151, No. 2, 2003, pp. 153-164. doi:10.1016/S0011-916402 00994-3

[91] A. S. Nafey, H. E. Fath, S. O. El-Helaby and A. Soliman, “Solar Desalination Using Humidification Dehumidification Processes. Part I. An Numerical Investigation,” Energy Conversion and Management, Vol. 45, No. 2, 2004, pp. 1243-1261. doi:10.1016/S0196-890403 00151-1

[92] H. E. Fath and A. Ghazy, “Solar Desalination Using Humodification-Dehumidification Technology,” Desalination, Vol. 142, No. 2, 2002, pp. 119-133.

[93] E. Chafik, “A New Seawater Desalination Process Using Solar Energy,” Desalination, Vol. 153, No. 1, 2003, pp. 25-37. doi:10.1016/S0011-916402 01090-1

[94] E. Chafik, “Design of Plants for Solar Desalination Using the Multi-Stage Heating Humidifying Technique,” Desalination, Vol. 168, No. 3, 2004, pp. 55-71. doi:10.1016/j.desal.2004.06.169

[95] H. Karan, A. Mitsos and H. John, “Optimal Operating Conditions and Configurations for Humidification-Dehumidification Desalination Cycles,” International Journal of Thermal Sciences, Vol. 50, No. 5, 2011, pp. 779-789. doi:10.1016/j.ijthermalsci.2010.12.013

[96] S. B. Hou and H. F. Zhang “A Hybrid Solar Desalination Process of the Multi-Effect humidification Dehumidification and Basin-Type Unit,” Desalination, Vol. 220, No. 1-3, 2008, pp. 552-557. doi:10.1016/j.desal.2007.01.055

[97] H. Muller-Holst, “Solar Thermal Desalination Using the Multiple Effect Humidification MEH Method,” In: Book Chapter, Solar Desalination for the 21st Century, Pergamon Press, Oxford, 2007, pp. 215-225.

[98] B. M. Hamieh and J. R. Beckmann, “Seawater Desalination Using Dew-Vaporation Technique: Theoretical Development and Design Evolution,” Desalination, Vol. 195, No. 2, 2006, pp. 1-13. doi:10.1016/j.desal.2005.09.034

[99] K. H. Mistry, J. H. Lienhard and S. M. Zubair, “Effect of Entropy Generation on the Performance of Humidification-Dehumidification Desalination Cycles,” International Journal of Thermal Sciences, Vol. 49, 2010, pp. 1837-1847. doi:10.1016/j.ijthermalsci.2010.05.002

[100] J. Orfi, N. Galanis and M. Laplante, “Air Humidification-Dehumidification for a Water Desalination System Using Solar Energy,” Desalination, Vol. 203, No. 1-3, 2007, pp. 471-481. doi:10.1016/j.desal.2006.04.022

[101] M. Al-Sahali and M. Hisham, “Humidification Dehumidification Desalination Process: Design and Performance Evaluation,” Chemical Engineering Journal, Vol. 143, No. 1-3, 2008, pp. 257-264. doi:10.1016/j.cej.2008.04.030

[1] J. Bendfeld, Ch. Broker, K. Menne, E. Ortjohann, L. Temme, J. Vob and P. C. M. Carvallo, “Design of a PV-Powered Reverse Osmosis Plant for Desalination of Brackish Water,” Proceedings of 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 6-10 July 1998, pp. 3075-3077.

[2] S. Kalogirou, “Economic Analysis of a Solar Assisted Desalination System,” Renewable Energy, Vol. 12, No. 4, 1997, pp. 351-367. doi:10.1016/S0960-1481(97)00063-3

[3] R. M. Morris and W. T. Hanbury, “Predication of Critical Desalination Parameters Using Radial Basis Functions Network,” Proceedings of the New Technologies for the Use of Renewable Energy Sources in Water Desalination, Sec.I, Athens, 1991, pp. 30-50.

[4] N. Kh. Nawayseh, M. Farid, S. Al-Hallaj and A. R. Al-Timimi, “Solar Desalinate Heat Ion Based on Humidification Process-I and Mass Transfer Coefficients,” Energy Conversion and Management, Vol. 40, No. 13, 1999, pp. 1423-1439. doi:10.1016/S0196-8904(99)00018-7

[5] A. E. Kabeel and M. S. Emad El Said, “A Hybrid Solar Desalination System of Air Humidification Dehumidification and Water Flashing Evaporation Part I. A Numerical Investigation,” Sixteen International Water Technology Conference, IWTC16, Istanbul, 7-10 May 2012.

[6] R. E. Treybal, “Mass Ttansfer Operation,” McGraw-Hill, NewYork, 1980.

[7] F. Kreith and R. F. Boehm, “Direct Contact Heat Transfer,” Hemisphere Corp., Washington, 1988.

[8] M. A. Younis, M. A. Darwish and F. Juwayhel, “Experimental and Theoretical Study of a Humidification-Dehumidification esalting System,” Desalination, Vol. 94, No. 1, 1993, pp. 11-24, doi:10.1016/0011-9164(93 80151-C

[9] J. Orfi, M. Laplante, H. Marmouch, N. Galanis, B. Benhamou, S. B. Nasrallah and C. T. Nguyen, “Experimental and Theoretical Study of a Humidification-Dehumidification Water Desalination System Using Solar Energy,” Desalination, Vol. 168, 2004, pp. 151-159. doi:10.1016/j.desal.2004.06.181

[10] M. Ben Amara, I. Houcine, A. Guizani and M. Maalej, “Experimental Study of a Multipl-Effect Humidification Solar Desalination Technique,” Desalination, Vol. 170, No. 3, 2004, pp. 209-221.

[11] E. H. Amer, H. Kotb, G. H. Mostafa and A. R. El Ghalban, “Theoretical and Experimental Investigation of Humidification-Dehumidification Desalination Unit,” Desalination, Vol. 249, No. 3, 2009, pp. 949-959. doi:10.1016/j.desal.2009.06.063

[12] K. Zhania and H. B. Bacha, “Experimental Investigation of a New Solar Desalination Prototype Using the Humidification-Dehumidification Principle,” Renewable Energy, Vol. 35, No. 11, 2010, pp. 2610-2617. doi:10.1016/j.renene.2010.03.033

[13] A. S. Nafey, H. E. S. Fath, S. O. El-Helaby and A. M. Soliman, “Solar Desalination Using Humidification-Dehumidification Processes. Part II. An Experimental Investigation,” Energy Conversion and Management, Vol. 45, No. 7-8, 2004, pp. 1263-1277. doi:10.1016/S0196-890403 00152-3

[14] JJ. Hermosillo, C. A. Arancibia Bulnes and C. A. Estrada, “Water Desalination by Air Humidification: Mathematical Model and Experimental Study,” Solar Energy, Vol. 86, No. 4, 2011, pp. 1070-1076.

[15] C. Yamali and I. Solmusf, “A Solar Desalination System Using Humidification-Dehumidification Process: Experimental Study and Comparison with the Theoretical Results,” Desalination, Vol. 220, No. 1-3, 2008, pp. 538-551. doi:10.1016/j.desal.2007.01.054

[16] S. A. El-Agouz and M. Abugderah, “Experimental Analysis of Humidification Process by Air Passing through Seawater,” Energy Conversion and Management,Vol.49.No.12,2008,pp.3698-3703.doi:10.1016/j.enconman.2008.06.033

[17] A. Lydersen, “Mass Transfer in Engineering Practice,” John Wiley & Sons, Hoboken, 1985.

[18] H. Muller-Holst, M. Engelhardt, M. Herve and W. Scholkopf, “Solar Thermal Seawater Desalination Systems for Decentralised Use,” Renewable Energy, Vol. 14, No. 1-4, 1998, pp. 311-318. doi:10.1016/S0960-148198 00083-4

[19] J. S. Wallis and R. J. Aull, “Improving Cooling Tower Performance,” Hydrocarbon Engineering, 1999, pp. 92-95.

[20] G. F. Yuan and H. F. Zhang, “Mathematical Modeling of a Closed Circulation Solar Desalination Unit with Humidification-Dehumidification,” Desalination, Vol. 205, No. 1-3, 2007, pp. 156-162. doi:10.1016/j.desal.2006.03.550

[21] Y. J. Dai, R. Z. Wang and H. F. Zhang, “Parametric Analysis to Improve the Performance of a Solar Desalina- tion Unit with Humidification and Dehumidification,” Desalination, Vol. 142, No. 2, 2002, pp. 107-118. doi:10.1016/S0011-916401 00430-1

[22] Y. J. Dai and H. F. Zhang, “Experimental Investigation of a Solar Desalination Unit with Humidification and Dehumidification,” Desalination, Vol. 130, No. 2, 2000, pp. 169-175. doi:10.1016/S0011-916400 00084-9

[23] E. Chafik, “A New Type of Seawater Desalination Plants Using Solar Energy,” Desalination, Vol. 156, No. 1-3, 2003, pp. 333-348. doi:10.1016/S0011-916403 00364-3

[24] J. F. Klausner, R. Mei and Y. Li, “Innovative Fresh Water Production Process for Fossil Fuel Plants,” Annual Report, University of Florida, Gainesville, 2003, 58 Pages.

[25] G. Al-Enezi, H. Ettouney and N. Fawzy, “Low Temperature Humidification Dehumidification Desalination Process,” Energy Conversion and Management, Vol. 47, No. 4, 2006, pp. 470-484. doi:10.1016/j.enconman.2005.04.010

[26] M. Farida and A. W. Al-Hajajb, “Solar Desalination with Humidification Dehumidification Cycle,” Desalination, Vol. 106, No. 2, 1996, pp. 427-429.

[27] A. Eslamimanesh and M. S. Hatamipour, “Mathematical Modeling of a Direct Contact Humidification-Dehumidification Desalination Process,” Desalination, Vol. 237, No. 1-3, 2009, pp. 296-304. doi:10.1016/j.desal.2008.01.023

[28] Shaobo Hou and Hefei Zhang, “A Hybrid Solar Desalination Process of the Multi-Effect Humidification Dehumidification and Basin-Type Unit,” Desalination, Vol. 220, 2008, pp. 552-557. doi:10.1016/j.desal.2007.01.055

[29] S. Farsad and A. Behzadmehr, “Analysis of a Solar Desalination Unit with Humidification Dehumidification Cycle Using DOE Method,” Desalination, Vol. 278, No. 1-3, 2011, pp. 70-76. doi:10.1016/j.desal.2011.05.008

[30] M. Khedr, “Techno-Economic Investigation of an Air Humidification-Dehumidification Desalination Process,” Chemical Engineering Technology, Vol. 16, No. 4, 1993, pp. 270-274. doi:10.1002/ceat.270160410

[31] H. P. Garg, R. S. Adhikari and R. Kumar, “Experimental Design and Computer Simulation of Multi-Effect Humidification (MEH)-Dehumidification Solar Distillation,” Desalination, Vol. 153, No. 1-3, 2002, pp. 81-86.doi:10.1016/S0011-916402 01106-2

[32] S. Al-Hallaj, M. M. Farid and A. R. Tamimi, “Solar Desalination with Humidification-Dehumidification Cycle: Performance of the Unit,” Desalination, Vol. 120, No. 3, 1998, pp. 273-280. doi:10.1016/S0011-916498 00224-0

[33] H. Ben-Bacha, T. Damak and M. Bouzguenda, “Experimental Validation of the Distillation Module of a Desalination Station Using the SMCEC Principle,” Renewable Energy, Vol. 28, No. 15, 2003, pp. 2335-2354. doi:10.1016/S0960-148103 00167-8

[34] I. Houcine, M. B. Amara, A. Guizani and M. Maalej, “Pilot Plant Testing of a New Solar Desalination Process by a Multiple-Effect Humidification Technique,” Desalination, Vol. 196, No. 1-3, 2006, pp. 105-124. doi:10.1016/j.desal.2005.11.022

[35] G. R. Mirsky and J. Bauthier, “Evolution of Cooling Tower Fill,” CTI Journal, Vol. 14, No. 1, 1993, pp. 12- 19.

[36] R. J. Aull and T. Krell, “Design Features of Cross-Fluted Film Fill and Their Effect on Thermal Performance,” CTI Journal, Vol. 21, No. 2, 2000, pp. 12-33.

[37] J. C. Kloppers, “A Critical Evaluation and Refinement of the Performance Prediction of Wet-Cooling Towers,” PhD dissertation, University of Stellenbosch, Stellenbosch, 2003.

[38] D. G. Kroger, “Air-Cooled Heat Exchangers and Cooling Towers Thermal-Flow Performance Evaluation and Design, Vols. I and II,” Pen well Corp, Tulsa, 2004.

[39] F. C. McQuiston, “Finned Tube Heat Exchangers: State of the Art for the Air Side,” ASHRAE Transactions, Vol. 17, No. 1, 1980, pp. 14-15.

[40] D. G. Rich, “The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row, Smooth Plate Fin-and-Tube Heat Exchangers,” ASHRAE Transactions, Vol. 79, No. 2, 1973, pp. 137-145.

[41] D. G. Rich, “The Effect of the Number of Tube Rows on Heat Transfer Performance of Smooth Plate Fin-and-Tube Heat Exchangers,” ASHRAE Transactions, Vol. 81, No. 1, 1975, pp. 307-317.

[42] F. C. McQuiston, “Fin Efficiency with Combined Heat and Mass Transfer,” ASHRAE Transactions, Vol. 81, No. 1, 1975, pp. 350-355.

[43] F. E. M. Saboya and E. M. Sparrow, “Transfer Characteristics of Two-Row Plate Fin and Tube Heat Exchanger Configurations,” International Journal of Heat and Mass Transfer, Vol. 19, No. 1, 1976, pp. 41-49. doi:10.1016/0017-931076 90009-0

[44] F. C. McQuiston, “Heat Mass and Momentum Transfer Data for Five Plate-Fin Tube Transfer Surface,” ASHRAE Transaction Part 1, Vol. 84, No. 1, 1978, pp. 266-293.

[45] F. C. McQuiston, “Correlation of Heat, Mass and Momentum Transport Coefficients for Plate-Fin-Tube Heat Transfer Surfaces with Staggered Tubes,” ASHRAE Transaction, Vol. 84, No. 1, 1978, pp. 294-309.

[46] R. L. Webb, T. M. Rudy and M. A. Kedzierski, “Prediction of the Condensation Coefficient on Horizontal Integral-Fin Tubes,” Journal of Heat Transfer, Vol. 107, No. 2, 1985, pp. 369-376. doi:10.1115/1.3247424

[47] P. W. Eckels and T. J. Rabas, “Dehumidification: On the Correlation of Wet and Dry Transport Processes in Plate Finned-Tube Heat Exchangers,” Journal of Heat Transfer, Vol. 109, No. 3, 1987, pp. 575-582. doi:10.1115/1.3248127

[48] J. E. R. Coney, C. G. W. Sheppard and E. A. M. El-Shafei, “Fin Performance with Condensation from Humid Air: A Numerical Investigation,” International Journal of Heat and Fluid Flow, Vol. 10, No. 3, 1989, pp. 224-231.doi:10.1016/0142-727X89 90041-6

[49] A. M. Jacobi and V. W. Goldschmidt, “Low Reynolds Number Heat and Mass Transfer Measurements of an Overall Counterflow, Baffled, Finned-Tube, Condensing Heat Exchanger,” International Journal of Heat and Mass Transfer, Vol. 33, No. 4, 1990, pp. 755-765. doi:10.1016/0017-931090 90173-R

[50] D. R. Mirth and S. Ramadhyani, “Prediction of Cooling-Coil Performance under Condensing Conditions,” International Journal of Heat and Fluid Flow, Vol. 14, No. 4, 1993, pp. 391-400.

[51] D. R. Mirth and S. Ramadhyani, “Correlations for Predicting the Air-Side Nusselt Numbers and Friction Factors in Chilled-Water Cooling Coils,” Experimental Heat Transfer, Vol. 7, No. 2, 1994, PP. 143-162. doi:10.1080/08916159408946477

[52] W. L. Fu, C. C. Wang, W. R. Chang and C. T. Chang, “Effect of Anti-Corrosion Coating on the Thermal Characteristics of a Louvered Finned Tube Heat Exchangers Under Dehumidifying Conditions,” ASMEPUBLICATIONSHTD, Vol. 320, 1995, pp. 75-82.

[53] Y. Seshimo, K. Ogawa, K. Marumoto and M. Fujii, “Heat and Mass Transfer Performances on Plate Fin and Tube Heat Exchangers with Dehumidification,” Heat Transfer Japanese Research, Vol. 18, No. 5, 1989, pp. 79-94.

[54] G. Wu and T. Y. Bong, “Overall Efficiency of a Straight Fin with Combined Heat and Mass Transfer,” ASHRAE Transactions, Vol. 100, Pt. 1, 1994, pp. 367-374.

[55] M. Sen and K. T. Yang, “Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering,” CRC Handbook of Thermal Engineering, 2000, pp. 620-661.

[56] Zhao, X. McClain and R. L. Sen, “An Artificial Neural Network Model of Heat Exchanger,” Symposium of Thermal Science and Engineering in Honor of Chancellor Lin Tine, 1995, pp. 83-88.

[57] G. Diaz, M. Sen, K. T. Yang and R. L. McClain, “Simulation of Heat Exchanger Performance by Artificial Neural Networks,” International Journal of Heating Ventilating Air Conditioning and Refrigerating Research, Vol. 5, 1999, pp. 195-208.

[58] J. Y. Kim and T. H. Song, “Effect of Tube Alignment on the Heat Mass Transfer from a Plate Fin and Two-Tube Assembly: Naphthalene Sublimation Results,” International Journal of Heat and Mass Transfer, Vol. 46, No. 16, 2003, pp. 3051-3059. doi:10.1016/S0017-931003 00091-7

[59] M. S. Mon and U. Gross, “Numerical Study of Fin-Spacing Effects in Annular-Finned Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, Vol. 47, No. 8-9, 2004, pp. 1953-1964. doi:10.1016/j.ijheatmasstransfer.2003.09.034

[60] Y. Kim, “Heat Transfer Characteristics of Flat Plate Finned-Tube Heat Exchangers with Large Fin Pitch,” International Journal of Refrigeration, Vol. 28, No. 6, 2005, pp. 851-858. doi:10.1016/j.ijrefrig.2005.01.013

[61] G. Xie, Q. Wang and B. Sunden, “Parametric Study and Multiple Correlations on Air-Side Heat Transfer and Friction Characteristics of Fin and Tube Heat Exchangers with Large Number of Large Diameter Tube Rows,” Applied Thermal Engineering, Vol. 29, No. 1, 2009, pp. 1-16. doi:10.1016/j.applthermaleng.2008.01.014

[62] D. K. Yang, K. S. Lee and S. Song, “Fin Spacing Optimization of a Fin Tube Heat Exchanger under Frosting Conditions,” International Journal of Heat and Mass Transfer, Vol. 49, No. 15-16, 2006, pp. 2619-2625. doi:10.1016/j.ijheatmasstransfer.2006.01.016

[63] D. Q. Kern, “Process Heat Transfers,” Tata McGraw-Hill, Noida, 2002.

[64] T. Tinker, “Shell Side Characteristics of Shell and Tube Heat Exchangers, Parts I, II and III, General Discussion of Heat Transfer,” Proceedings of the Institution of Mechanical Engineers, London, 1951.

[65] K. J. Bell, “Final Report of the Cooperative Research Program on Shell and Tube Heat Exchangers,” Engineering Experimental Station Bulletin, Vol. 5, 1963.

[66] E. A. D. Saunders, “Heat Exchangers: Selection, Design & Construction,” Halsted Pr, Sydney, 1988.

[67] J. Taborek, “Recommended Method: Principles and Limitations,” In: G. F. Hewitt, Heat Exchanger Design Handbook, Begell House, New York, 2002.

[68] M. J. N. Wills, D. Johnston and A. Harwell, “A New and Accurate Hand Calculation Method for Shellside Pressure Drop and Flow Distribution,” American Society of Mechanical Engineers, 1984, p. 67.

[69] G. F. Hewitt, “Flow Stream Analysis Method for Segmentally Baffled Shell and Tube Heat Exchangers,” Heat Exchanger Design Handbook, 2002.

[70] M. Reppich and S. Zagermann, “A New Design Method for Segmentally Baffled Heat Exchangers,” Computers & Chemical Engineering, Vol. 19, No. 1, 1995, pp. 137-142. doi:10.1016/0098-135495 87028-8

[71] E. S. Gaddis and V. Gnielinski, “Pressure Drop on the Shell Side of Shell and Tube Heat Exchangers with Segmental Baffles,” Chemical Engineering and Processing, Vol. 36, No. 2, 1997, pp. 149-159. doi:10.1016/S0255-270196 04194-3

[72] E. S. Gaddis and V. Gnielinski, “Pressure Drop in Cross Flow across Tube Bundles,” International Chemical Engineering, Vol. 25, No. 1, 1985, pp. 1-15.

[73] H. Li and V. Kottke, “Local Heat Transfer in the First Baffle Compartment of the Shell and Tube Heat Exchangers for Staggered Tube Arrangement,” Experimental Thermal and Fluid Science, Vol. 16, No. 4, 1998, pp. 342-348. doi:10.1016/S0894-177797 10036-X

[74] H. Li and V. Kottke, “Visualization and Determination of Local Heat Transfer Coefficients in Shell and Tube Heat Exchangers for Staggered Tube Arrangement by Mass Transfer Measurements,” Experimental Thermal and Fluid Science, Vol. 17, No. 3, 1998, pp. 210-216. doi:10.1016/S0894-177797 10064-4

[75] H. Li and V. Kottke, “Effect of the Leakage on Pressure Drop and Local Heat Transfer in Shell and Tube Heat Exchangers for Staggered Tube Arrangement,” International Journal of Heat and Mass Transfer, Vol. 41, No. 2, 1998, pp. 425-434. doi:10.1016/S0017-931097 00112-9

[76] H. Li and V. Kottke, “Effect of Baffle Spacing on Pressure Drop and Local Heat Transfer in Shell and Tube Heat Exchangers for Staggered Tube Arrangement,” International Journal of Heat and Mass Transfer, Vol. 41, No. 10, 1998, pp. 1303-1311. doi:10.1016/S0017-931097 00201-9

[77] G. Diaz, M. Sen, T. Yang and R. L. McClain, “Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks,” International Journal of Heat and Mass Transfer, Vol. 44, No. 9, 2001, pp. 1671-1679. doi:10.1016/S0017-931000 00228-3

[78] M. Ayoubi, “Dynamic Multi-Layer Perceptron Networks: Application to the Nonlinear Identification and Predictive Control of a Heat Exchanger,” Applications of Neural Adaptive Control Technology, 1997, p. 205.

[79] K. Zhani, H. Ben Bacha and T. Damak, “Modeling and Experimental Validation of a Humidification-Dehumidification Desalination Unit Solar Part,” Energy, Vol. 36, No. 5, 2011, pp. 3159-3169. doi:10.1016/j.energy.2011.03.005

[80] M. Adel and M. Fatouh, “Experimental and Numerical Investigation of Humidification/Dehumidification Solar Water Desalination Systems,” Desalination, Vol. 247, 2009, pp. 594-609. doi:10.1016/j.desal.2008.12.039

[81] C. L. Gupta and H. P. Garg, “System Design in Solar Water Heaters with Natural Circulation,” Solar Energy, Vol. 12, No. 2, 1968, pp. 163-170. doi:10.1016/0038-092X68 90003-0

[82] K. S. Ong, “A Finite-Difference Method to Evaluate the Thermal Performance of a Solar Water Heater,” Solar Energy, Vol. 16, No. 3, 1974, pp. 137-147. doi:10.1016/0038-092X74 90010-3

[83] K. S. Ong, “An Improved Computer Program for the Thermal Performance of a Solar Water Heater,” Solar Energy, Vol. 18, No. 3, 1976, pp. 183-191, doi:10.1016/0038-092X76 90017-7

[84] A. I. Kudish, P. Santamaura and P. Beaufort, “Direct Measurement and Analysis of Thermosiphon Flow,” Solar Energy, Vol. 35, No. 2, 1985, pp. 167-173. doi:10.1016/0038-092X85 90006-4

[85] G. L. Morrison and J. E. Braun, “System Modeling and Operation Characteristics of Thermosyphon Solar Water Heaters,” Solar Energy, Vol. 34, No. 2, 1985, pp. 389-405. doi:10.1016/0038-092X85 90051-9

[86] P. A. Hobson and B. Norton, “A Design Monogram for Direct Thermosyphon Solar-Energy Water Heaters,” Solar Energy, Vol. 43, No. 2, 1989, pp. 85-95. doi:10.1016/0038-092X89 90150-3

[87] A. Shariah and B. Shalabi, “Optimal Design for a Ther- mosyphon Solar Water Heater,” Renewable Energy, Vol. 11, No. 3, 1997, pp. 351-361. doi:10.1016/S0960-148197 00005-0

[88] N. K. Nawayseh, M. M. Farid, A. A. Omar, S. M. Al- Hallaj and A. R. Tamimi, “A Simulation Study to Improve the Performance of a Solar Humidification-Dehumidification Desalination Unit Constructed in Jordan,” Desalination, Vol. 109, No. 3, 1997, pp. 277-284. doi:10.1016/S0011-916497 00074-X

[89] H. Ben Bacha, M. Bouzguenda, M. S. Abid and A. Y. Maalej, “Modeling and Simulation of a Water Desalination Station with Solar Multiple Condensation Evaporation Cycle Technique,” Renewable Energy, Vol. 18, No. 3, 1999, pp. 349-365. doi:10.1016/S0960-148198 00800-3

[90] M. M. Farid, S. Parekh, J. R. Selman and S. Al-Hallaj, “Solar Desalination with a Humidification-Dehumidification Cycle: Mathematical Modeling of the Unit,” Desalination, Vol. 151, No. 2, 2003, pp. 153-164. doi:10.1016/S0011-916402 00994-3

[91] A. S. Nafey, H. E. Fath, S. O. El-Helaby and A. Soliman, “Solar Desalination Using Humidification Dehumidification Processes. Part I. An Numerical Investigation,” Energy Conversion and Management, Vol. 45, No. 2, 2004, pp. 1243-1261. doi:10.1016/S0196-890403 00151-1

[92] H. E. Fath and A. Ghazy, “Solar Desalination Using Humodification-Dehumidification Technology,” Desalination, Vol. 142, No. 2, 2002, pp. 119-133.

[93] E. Chafik, “A New Seawater Desalination Process Using Solar Energy,” Desalination, Vol. 153, No. 1, 2003, pp. 25-37. doi:10.1016/S0011-916402 01090-1

[94] E. Chafik, “Design of Plants for Solar Desalination Using the Multi-Stage Heating Humidifying Technique,” Desalination, Vol. 168, No. 3, 2004, pp. 55-71. doi:10.1016/j.desal.2004.06.169

[95] H. Karan, A. Mitsos and H. John, “Optimal Operating Conditions and Configurations for Humidification-Dehumidification Desalination Cycles,” International Journal of Thermal Sciences, Vol. 50, No. 5, 2011, pp. 779-789. doi:10.1016/j.ijthermalsci.2010.12.013

[96] S. B. Hou and H. F. Zhang “A Hybrid Solar Desalination Process of the Multi-Effect humidification Dehumidification and Basin-Type Unit,” Desalination, Vol. 220, No. 1-3, 2008, pp. 552-557. doi:10.1016/j.desal.2007.01.055

[97] H. Muller-Holst, “Solar Thermal Desalination Using the Multiple Effect Humidification MEH Method,” In: Book Chapter, Solar Desalination for the 21st Century, Pergamon Press, Oxford, 2007, pp. 215-225.

[98] B. M. Hamieh and J. R. Beckmann, “Seawater Desalination Using Dew-Vaporation Technique: Theoretical Development and Design Evolution,” Desalination, Vol. 195, No. 2, 2006, pp. 1-13. doi:10.1016/j.desal.2005.09.034

[99] K. H. Mistry, J. H. Lienhard and S. M. Zubair, “Effect of Entropy Generation on the Performance of Humidification-Dehumidification Desalination Cycles,” International Journal of Thermal Sciences, Vol. 49, 2010, pp. 1837-1847. doi:10.1016/j.ijthermalsci.2010.05.002

[100] J. Orfi, N. Galanis and M. Laplante, “Air Humidification-Dehumidification for a Water Desalination System Using Solar Energy,” Desalination, Vol. 203, No. 1-3, 2007, pp. 471-481. doi:10.1016/j.desal.2006.04.022

[101] M. Al-Sahali and M. Hisham, “Humidification Dehumidification Desalination Process: Design and Performance Evaluation,” Chemical Engineering Journal, Vol. 143, No. 1-3, 2008, pp. 257-264. doi:10.1016/j.cej.2008.04.030