Back
 AJAC  Vol.4 No.7 A , July 2013
Adsorption of Reactive Dyes on Activated Carbon Developed from Enteromorpha prolifera
Abstract: Activated carbon was prepared from Enteromorpha prolifera by zinc chloride activation. The adsorption behaviors of three reactive dyes (Reactive Red 23, Reactive Blue 171 and Reactive Blue 4) onto this biomass activated carbon were investigated in batch systems. The experimental findings showed that the removal efficiencies of three dyes onto activated carbon were maximum at the initial solution pH of 4.5 - 6.0. Thermodynamic studies suggested that adsorption reaction was an endothermic and spontaneous process. Adsorption isotherm of the three dyes obeyed Freundlich isotherm modal. Dye adsorption capacities of activated carbon were 59.88, 71.94 and 131.93 mg·g?1 for RR23, RB171 and RB4 at 27?C, respectively. Second-order kinetic models fitted better to the equilibrium data of three dyes. The adsorption process on activated carbon was mainly controlled by intraparticle diffusion mechanism.
Cite this paper: D. Sun, Z. Zhang, M. Wang and Y. Wu, "Adsorption of Reactive Dyes on Activated Carbon Developed from Enteromorpha prolifera," American Journal of Analytical Chemistry, Vol. 4 No. 7, 2013, pp. 17-26. doi: 10.4236/ajac.2013.47A003.
References

[1]   S. Ibrahim, I. Fatimah, H. Ang and S.Wang, “Adsorption of Anionic Dyes in Aqueous Solution Using Chemically Modified Barley Straw,” Water Science and Technology, Vol. 62, No. 5, 2010, pp. 1177-1182. doi:10.2166/wst.2010.388

[2]   Y. S. Al-Degs, M. I. El-Barghouthi, M. A. Khraisheh, M. N. Ahmad and S. J. Allen, “Effect of Surface Area, Micropores, Secondary Micropores and Mesopores Volumes of Activated Carbons on Reactive Dyes Adsorption from Solution,” Separation Science and Technology, Vol. 39, No. 1, 2004, pp. 97-111. doi:10.1081/SS-120027403

[3]   S. Wang, Y. Boyjoo, A. Choueib and H. Zhu, “Removal of Dyes from Solution Using Fly Ash and Red Mud,” Water Research, Vol. 39, No. 1, 2005, pp. 129-138. doi:10.1016/j.watres.2004.09.011

[4]   B. C. Oei, S. Ibrahim, S. Wang and H. Ang, “Surfactant Modified Barley Straw for Removal of Acid and Reactive Dyes from Aqueous Solution,” Bioresource Technology, Vol. 100, No. 18, 2009, pp. 4292-4295. doi:10.1016/j.biortech.2009.03.063

[5]   K. Vijayaraghavan, S. W. Won and Y. Yun, “Treatment of Complex Remazol Dye Effluent Using Sawdustand Coal-Based Activated Carbons,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 790-796. doi:10.1016/j.jhazmat.2009.01.055

[6]   N. K. Amin, “Removal of Reactive Dye from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Sugarcane Bagasse Pith,” Desalination, Vol. 223, No. 1-3, 2008, pp. 152-161. doi:10.1016/j.desal.2007.01.203

[7]   M. A. M. Salleh, D. K. Mahmoud, W. A. Karim and A. Idris, “Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review,” Desalination, Vol. 280, No. 1-3, 2011, pp. 1-13. doi:10.1016/j.desal.2011.07.019

[8]   N. K. Amin, “Removal of Direct Blue-106 Dye from Aqueous Solution Using New Activated Carbons Developed from Pomegranate Peel: Adsorption Equilibrium and Kinetics,” Journal of Hazardous Materials, Vol. 165, No. 1-3, 2009, pp. 52-62. doi:10.1016/j.jhazmat.2008.09.067

[9]   Y. C. Sharma and S. N. U. Upadhyay, “Removal of a Cationic Dye from Wastewaters by Adsorption on Activated Carbon Developed from Coconut Coir,” Energy and Fuel, Vol. 23, No. 6, 2009, pp. 2983-2988. doi:10.1021/ef9001132

[10]   P. K. Malik, “Use of Activated Carbons Prepared from Sawdust and Ricehusk for Adsorption of Acid Dyes: A Case Study of Acid Yellow 36,” Dyes and Pigments, Vol. 56, No. 3, 2003, pp. 239-249. doi:10.1016/S0143-7208(02)00159-6

[11]   N. M. Mahmoodi, B. Hayati and C. Lan, “Adsorption of Textile Dyes on Pine Cone from Colored Wastewater: Kinetic, Equilibrium and Thermodynamic Studies,” Desalination, Vol. 268, No. 1-3, 2011, pp. 117-125. doi:10.1016/j.desal.2010.10.007

[12]   A. Aygun, S. Yenisoy-Karakas and I. Duman, “Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties,” Microporous and Mesoporous Materials, Vol. 66, No. 2-3, 2003, pp. 189-195. doi:10.1016/j.micromeso.2003.08.028

[13]   N. Kannan and M. M. Sundaram, “Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study,” Dyes and Pigments, Vol. 51, No. 1, 2001, pp. 25-40. doi:10.1016/S0143-7208(01)00056-0

[14]   V. K. Gupta, A. Mittal, R. Jain, M. Mathur and S. Sikarwar, “Adsorption of Safranin T from Wastewater Using Waste Materials-Activated Carbon and Activated Rice Husk,” Journal of Colloid and Interface Science, Vol. 303, No. 1, 2006, pp. 80-86. doi:10.1016/j.jcis.2006.07.036

[15]   N. Thinakaran, P. Panneerselvam, P. Baskaralingam, D. Elango and S. Sivanesan, “Equilibrium and Kinetic Studies on the Removal of Acid Red 114 from Aqueous Solutions Using Activated Carbons Prepared from Seed Shells,” Journal of Hazardous Materials, Vol. 158, No. 1, 2008, pp. 142-150. doi:10.1016/j.jhazmat.2008.01.043

[16]   P. D. Saha, A. Dey and P. Marik, “Batch Removal of Chromium(VI) from Aqueous Solutions Using Wheat Shell as Adsorbent: Process Optimization using Response Surface Methodology,” Desalination Water Treatment, Vol. 39, No. 1-3, 2012, pp. 95-102. doi:10.1080/19443994.2012.669164

[17]   A. Öer, G. Gürbüz, A. Çalimli and B. K. Köbahti, “Biosorption of Copper(II) Ions on Enteromorpha Prolifera: Application of Response Surface Methodology,” Chemical Engineering Journal, Vol. 146, No. 3, 2009, pp. 377387. doi:10.1016/j.cej.2008.06.041

[18]   R. Aravindhan, J. R. Rao and B. U. Nair, “Preparation and Characterization of Activated Carbon from Marine Macro-Algal Biomass,” Journal of Hazardous Materials, Vol. 162, No. 2-3, 2009, pp. 688-694. doi:10.1016/j.jhazmat.2008.05.083

[19]   D. Mohan, K. P. Singh, G. Singh and K. Kumar, “Removal of Dyes from Wastewater Using Flyash, a LowCost Adsorbent,” Industrial & Engineering Chemistry Research, Vol. 41, No. 15, 2002, pp. 3688-3695. doi:10.1021/ie010667+

[20]   N. Dizge, C. Aydiner, E. Demirbas, M. Kobya and S. Kara, “Adsorption of Reactive Dyes from Aqueous Solutions by Fly Ash: Kinetic and Equilibrium Studies,” Journal of Hazardous Materials, Vol. 150, No. 3, 2008, pp. 737-746. doi:10.1016/j.jhazmat.2007.05.027

[21]   V. K. Gupta and A. Rastogi, “Biosorption of Hexavalent Chromium by Raw and Acid-treated Green Alga Oedogonium Hatei from Aqueous Solutions,” Journal of Hazardous Materials, Vol. 163, No. 1, 2009, pp. 396-402. doi:10.1016/j.jhazmat.2008.06.104

[22]   Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh and G. M. Walker, “Effect of Solution pH, Ionic Strength, and Temperature on Adsorption Behavior of Reactive Dyes on Activated Carbon,” Dyes and Pigments, Vol. 77, No. 1, 2008, pp. 16-23. doi:10.1016/j.dyepig.2007.03.001

[23]   Y. S. Al-Degs, M. A. M. Khraisheh, S. J. Allen and M. N. Ahmad, “Effect of Carbon Surface Chemistry on the Removal of Reactive Dyes from Textile Effluent,” Water Research, Vol. 34, No. 3, 2000, pp. 927-935. doi:10.1016/S0043-1354(99)00200-6

[24]   S. Wang and H. T. Li, “Dye Adsorption on Unburned Carbon: Kinetics and Equilibrium,” Journal of Hazardous Materials, Vol. 126, No. 1-3, 2005, pp. 71-77. doi:10.1016/j.jhazmat.2005.05.049

[25]   A. R. Dinçr, Y. Günes, N. Karakaya and E. Günes, “Comparison of Activated Carbon and Bottom Ash for Removal of Reactive Dye from Aqueous Solution,” Bioresource Technology, Vol. 98, No. 4, 2007, pp. 834-839. doi:10.1016/j.biortech.2006.03.009

[26]   J. Acharya, J. N. Sahu, C. R. Mohanty and B. C. Meikap, “Removal of Lead(II) from Wastewater by Activated Carbon Developed from Tamarind Wood by Zinc Chloride Activation,” Chemical Engineering Journal, Vol. 149, No. 1-3, 2009, pp. 249-262. doi:10.1016/j.cej.2008.10.029

[27]   M. Matheswaran and T. Karunanithi, “Adsorption of Chrysoidine R by Using Fly Ash in Batch Process,” Journal of Hazardous Materials, Vol. 145, No. 1-2, 2007, pp. 154161. doi:10.1016/j.jhazmat.2006.11.006

[28]   N. K. Amin, “Removal of Reactive Dye from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Sugarcane Bagasse Pith,” Desalination, Vol. 223, No. 1-3, 2008, pp. 152-161. doi:10.1016/j.desal.2007.01.203

[29]   B. T. Calvete, E. C. Lima, N. F. Cardoso and C. P. Vaghetti, “Application of Carbon Adsorbents Prepared from Brazilian-Pine Fruit Shell for the Removal of Reactive Orange 16 from Aqueous Solution: Kinetic, Equilibrium, and Thermodynamic Studies,” Journal of Environmental Management, Vol. 91, No. 8, 2010, pp. 1695-1706. doi:10.1016/j.jenvman.2010.03.013

[30]   S. Senthilkumaar, P. Kalaamani, K. Porkodi, P. R. Varadarajan and C. V. Subburaam, “Adsorption of Dissolved Reactive Red Dye from Aqueous Phase onto Activated Carbon Prepared from Agricultural Waste,” Bioresource Technology, Vol. 97, No. 14, 2006, pp. 1618-1625. doi:10.1016/j.biortech.2005.08.001

[31]   A. A. Ahmad, B. H. Hameed and N. Aziz, “Adsorption of Direct Dye on Palm Ash: Kinetic and Equilibrium Modeling,” Journal of Hazardous Materials, Vol. 141, No. 1, 2000, pp. 70-76. doi:10.1016/j.jhazmat.2006.06.094

[32]   M. A. M. Khraisheh, Y. S. Al-Degs, S. J. Allen and M. N. Ahmad, “Elucidation of Controlling Steps of Reactive Dye Adsorption on Activated Carbon,” Industrial & Engineering Chemistry Research, Vol. 41, No. 6, 2002, pp. 1651-1657. doi:10.1021/ie000942c

[33]   D. Chazopoulos, A. Varma and R. L. Irvine, “Activated Carbon Adsorption and Desorption of Toluene in the Aqueous Phase,” AIChE Journal, Vol. 39, No. 12, 1993, pp. 2027-2041. doi:10.1002/aic.690391213

[34]   S. Rengaraj and S. H. Moon, “Kinetic of Adsorption of Co(II) Removal from Water and Wastewater by Ion Exchange Resins,” Water Research, Vol. 36, No. 7, 2002, pp. 1783-1793. doi:10.1016/S0043-1354(01)00380-3

[35]   K. V. Kumar and K. Porkodi, “Mass Transfer, Kinetics and Equilibrium Studies for the Biosorption of Methylene Blue Using Paspalum Notatum,” Journal of Hazardous Materials, Vol. 146, No. 1-2, 2007, pp. 214-226. doi:10.1016/j.jhazmat.2006.12.010

[36]   R. Apiratikul, V. Madacha and P. Pavasant, “Kinetic and Mass Transfer Analyses of Metal Biosorption by Caulerpa Lentillifera,” Desalination, Vol. 278, No. 1-3, 2011, pp. 303-311.

 
 
Top