AJAC  Vol.4 No.7 A , July 2013
Kinetics and Thermodynamics of Adsorption Methylene Blue onto Tea Waste/CuFe2O4 Composite
Abstract: Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred.
Cite this paper: S. Hashemian, M. Ardakani and H. Salehifar, "Kinetics and Thermodynamics of Adsorption Methylene Blue onto Tea Waste/CuFe2O4 Composite," American Journal of Analytical Chemistry, Vol. 4 No. 7, 2013, pp. 1-7. doi: 10.4236/ajac.2013.47A001.

[1]   A. H. Hawari and C. N. Mullingan, “Heavy Metals Uptake Mechanisms in a Fixed Bed Column by CalciumTreated Anaerobic Biomass,” Process Biochemistry, Vol. 41, No. 1, 2006, pp. 187-198. doi:10.1016/j.procbio.2005.06.018

[2]   K. R. Ramakrishna and T. Viraraghavan, “Dye Removal Using Low Cost Adsorbents,” Water Science and Technology, Vol. 36, No. 2-3, 1997, pp. 189-196. doi:10.1016/S0273-1223(97)00387-9

[3]   C. O’Neill, F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pin-Heiro and W. Dele, “Color in Textile Effluents—Sources, Measurement, Discharge Consents and Simulation: A Review,” Journal of Chemical Technology and Biotechnology, Vol. 74, No. 11, 1999, pp. 1009-1018. doi:10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N

[4]   I. M. Banat, P. Nigam, D. Singh and R. Marchant, “Microbial Decolourization of Textile Dyes Containing Effluents: A Review,” Bioresource Technology, Vol. 58, No. 3, 1996, pp. 217-227. doi:10.1016/S0960-8524(96)00113-7

[5]   T. Sauer, G. Cesconeto Neto, H. J. Jose and R. F. P. M. Mureira, “Kinetics of Reactive Dye Adsorption onto Dolomitic Sorbents,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 149, No. 1-3, 2002, pp. 147154. doi:10.1016/S1010-6030(02)00015-1

[6]   G. M. Walker, L. Hansen, J. A. Hanna and S. J. Allen, “Kinetics of a Reactive Dye Adsorption onto Dolomitic Sorbents,” Water Research, Vol. 37, No. 9, 2003, pp. 2081-2089. doi:10.1016/S0043-1354(02)00540-7

[7]   K. K. H. Choy, G. Mckay and J. F. Porter, “Sorption of Acid Dyes from Effluents Using Activated Carbon,” Resources, Conservation and Recycling, Vol. 27, No. 1-2, 1999, pp. 57-71.

[8]   H. Berneth and A. G. Bayer, “Ullmann’s Encyclopedia of Industrial Chemistry,” Wiley-VCH Press, Berlin, 2003, p. 585.

[9]   K. V. Kumar and A. Kumaran, “Removal of Methylene Blue by Mango Seed Kernel Powder,” Biochemical Engineering Journal, Vol. 27, No. 1, 2005, pp. 83-93. doi:10.1016/j.bej.2005.08.004

[10]   Y. Bulur and H. Aydm, “Kinetics and Thermodynamics Study of Mthylen Blue Adsorption on Wheat Shells,” Desalination, Vol. 194, No. 1-3, 2006, pp. 259-276. doi:10.1016/j.desal.2005.10.032

[11]   K. V. Kumar, V. Ramamurthi and S. Sivanesan, “Modeling the Mechanism Involved during the Sorption of Methylene Blue onto Fly Ash,” Journal of Colloid and Interface Science, Vol. 284, No. 1, 2005, pp. 14-21. doi:10.1016/j.jcis.2004.09.063

[12]   D. Ghosh and K. G. Bhattacharyya, “Adsorption of Methylene Blue on Kaolinite,” Applied Clay Science, Vol. 20, No. 6, 2002, pp. 295-300. doi:10.1016/S0169-1317(01)00081-3

[13]   V. Vadivelan and K. V. Kumar, “Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Hush,” Journal of Colloid and Interface Science, Vol. 286, No. 1, 2005, pp. 90-100. doi:10.1016/j.jcis.2005.01.007

[14]   S. Senthilkumaar, P. R. Varadarajan, K. Porkodi and C. V. Subbhuraam, “On the Adsorption and Diffusion of Methylene Blue in Glass Fibers,” Journal of Colloid and Interface Science, Vol. 286, No. 2, 2005, pp. 807-811. doi:10.1016/j.jcis.2005.01.035

[15]   S. Chakrabarti and B. K. Dutta, “Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies,” Journal of Colloid and Interface Science, Vol. 284, No. 1, 2005, pp. 78-82. doi:10.1016/j.jcis.2004.09.027

[16]   A. Gurses, S. Karaca, C. Dogar, R. Bayrak, M. Açikyildiz and M. Yalc, “Determination of Adsorptive Properties of Clay/Water System: Methylene Blue Sorption,” Journal of Colloid and Interface Science, Vol. 269, No. 2, 2004, pp. 310-314.

[17]   K. Imamura, E. Ikeda, T. Nagayasu, T. Sakiyama and K. Nakinishi, “Adsorption Behavior of Methylene Blue and Its Congeners on a Stainless Steel Surface,” Journal of Colloid and Interface Science, Vol. 245, No. 1, 2002, pp. 50-57.

[18]   M. Dogan, M. Alkan, A. Turkyilmaz and Y. Ozdemir, “Kinetics and Mechanism of Removal of Methylene Blue by Adsorption onto Perlite,” Journal of Hazardous Materials, Vol. 109, No. 1-3, 2004, pp. 141-148. doi:10.1016/j.jhazmat.2004.03.003

[19]   Md. Tamez Uddin, Md. Akhtarul Islam, S. Mahmud and Md. Rukanuzzaman, “Adsorptive Removal of Methylene Blue by Tea Waste,” Journal of Hazardous Materials, Vol. 164, No. 1, 2009, pp. 53-60. doi:10.1016/j.jhazmat.2008.07.131

[20]   A. Shukla, Y. H. Zhang, P. Dubey, J. L. Margrave and S. S. Shukla, “The Role of Sawdust in the Removal of Unwanted Materials from Water,” Journal of Hazardous Materials, Vol. 95, No. 1-2, 2002, pp. 137-152. doi:10.1016/S0304-3894(02)00089-4

[21]   N. Nasuha, B. H. Hameed and A. T. Mohd Din, “Rejected Tea as a Potential Low-Cost Adsorbent for the Removal of Methylene Blue,” Journal of Hazardous Materials, Vol. 175, No. 1-3, 2010, pp. 126-132. doi:10.1016/j.jhazmat.2009.09.138

[22]   A. Witek-Krowiak, R. G. Szafran and S. Modelski, “Biosorption of Heavy Metals from Solutions onto Peanut Shell as a Low-Cost Biosorbent,” Desalination, Vol. 265, No. 1-3, 2011, pp. 126-134. doi:10.1016/j.desal.2010.07.042

[23]   Y. Bulut and H. Aydin, “A Kinetic and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells,” Desalination, Vol. 194, No. 1-3, 2006, pp. 259-267. doi:10.1016/j.desal.2005.10.032

[24]   V. Mishra and C. Balomajumder, “Biosorption of Zn (п) on to the Surface of Non-Living Biomasses,” Water, Air, & Soil Pollution, Vol. 211, 2010, pp. 489-500.

[25]   A. E. Ofomaja, “Kinetic Study and Sorption Mechanism of Methylen Blue and Methyl Violet on to Mansonia Wood Sawdust,” Chemical Engineering Journal, Vol. 143, No. 1-3, 2008, pp. 85-95. doi:10.1016/j.cej.2007.12.019

[26]   I. Langmuir, “The Constitution and Fundamental Properties of Solids and Liquids,” Journal of the American Chemical Society, Vol. 40, No. 9, 1918, pp. 1361-1403. doi:10.1021/ja02242a004

[27]   H. M. F. Freundlich, “Over the Adsorption in Solution,” The Journal of Physical Chemistry, Vol. 57, 1906, pp. 385-471.

[28]   M. Anbia and A. Ghjaffari, “Removal of Malachite Green Dye from Wastewater,” Journal of the Iranian Chemical Society, Vol. 8, 2011, pp. 67-76.

[29]   Y. S. Ho and G. McKay, “Pseudo-Second Order Model for Sorption Processes,” Process Biochemistry, Vol. 34, No. 5, 1999, pp. 451-465. doi:10.1016/S0032-9592(98)00112-5

[30]   S. Hashemian and M. Salimi. “Nano Composite a Potential Low Cost Adsorbent for Removal of Cyanine,” Chemical Engineering Journal, Vol. 188, 2012, pp. 57-63. doi:10.1016/j.cej.2012.02.008

[31]   S. Hashemian, “Removal of Acid Red 151 from Water by Adsorption onto Nanocomposite MnFe2O4/Kaolin,” Main Group Chemistry, Vol. 10, No. 2, 2011, pp. 105-114.