APM  Vol.3 No.4 , July 2013
A Certain Subclass of Analytic Functions with Bounded Positive Real Part
ABSTRACT

For real numbers α and β such that 0α1β, we denote by T(α,β) the class of normalized analytic functions which satisfy , where U denotes the open unit disk. We find some relationships involving functions in the class T(α,β). And we estimate the bounds of coefficients and solve Fekete-Szego problem for functions in this class. Furthermore, we investigate the bounds of initial coefficients of inverse functions or bi-univalent functions.


Cite this paper
Y. Sim and O. Kwon, "A Certain Subclass of Analytic Functions with Bounded Positive Real Part," Advances in Pure Mathematics, Vol. 3 No. 4, 2013, pp. 409-414. doi: 10.4236/apm.2013.34059.
References
[1]   K. Kuroki and S. Owa, “Notes on New Class for Certain Analytic Functions,” RIMS Kokyuroku 1772, 2011, pp. 21-25.

[2]   H. M. Srivastava, A. K. Mishra and P. Gochhayat, “Certain Subclasses of Analytic and Bi-Univalent Functions,” Applied Mathematics Letters, Vol. 23, No. 10, 2010, pp. 1188-1192. doi:10.1016/j.aml.2010.05.009

[3]   Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, “Coefficient Estimates for a Certain Subclass of Analytic and Bi-Univalent Functions,” Applied Mathematics Letters, Vol. 25, No. 6, 2012, pp. 990-994. doi:10.1016/j.aml.2011.11.013

[4]   R. M. Ali, K. Lee, V. Ravichandran and S. Supramaniam, “Coefficient Estimates for Bi-Univalent Ma-Minda Starlike and Convex Functions,” Applied Mathematics Letters, Vol. 25, No. 3, 2012, pp. 344-351.

[5]   S. S. Miller and P. T. Mocanu, “Differential Subordinations, Theory and Applications,” Marcel Dekker, 2000.

[6]   W. Rogosinski, “On the Coefficients of Subordinate Functions,” Proceeding of the London Mathematical Society, Vol. 2, No. 48, 1943, pp. 48-62.

[7]   F. Keogh and E. Merkers, “A Coefficient Inequality for Certain Classes of Analytic Functions,” Proceedings of the American Mathematical Society, Vol. 20, No. 1, 1969, pp. 8-12. doi:10.1090/S0002-9939-1969-0232926-9

[8]   P. Duren, “Univalent Functions,” Springer-Verlag, New York, 1983.

 
 
Top