MNSMS  Vol.3 No.3 , July 2013
CFD Analysis of Influence of Slag Viscosity on the Splashing Process in an Oxygen Steelmaking Converter
Abstract: Physical properties of molten slag such as viscosity, density and surface tension have a significant influence on the slag splashing process in an oxygen steelmaking converter. Particularly, viscosity determines the shear forces that rule droplets formation. Besides, stirring of the molten slag bath strongly depends on this property. In this work, the influence of viscosity on the efficiency of slag splashing is explored by means of transient Computational Fluid Dynamics simulations. Several values of viscosity are employed in the computer experiments. In order to quantify the splashing efficiency as function of slag viscosity, an average slag fraction on the converter walls is defined and calculated. CFD results are compared with those of an empirical expression, and at least qualitative agreement is found.
Cite this paper: M. Barron, D. Medina and I. Hilerio, "CFD Analysis of Influence of Slag Viscosity on the Splashing Process in an Oxygen Steelmaking Converter," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 3, 2013, pp. 90-93. doi: 10.4236/mnsms.2013.33012.

[1]   C. J. Messina and J. R. Paules. “The Worldwide Status of BOF Slag Splashing Practices and Performance,” Steelmaking Conference Proceedings, Pittsburgh, 1996, pp. 153-155.

[2]   K. M. Goodson, N. Donaghy and R. O. Russell, “Furnace Refractory Maintenance and Slag Splashing,” Iron and Steelmaker, Vol. 22, No. 6, 1995, pp. 31-34.

[3]   K. C. Mills, Y. Su, A. B. Fox, Z. Li, R. P. Thackray and H. T. Tsai, “A Review of Slag Splashing,” ISIJ International, Vol. 45, No. 5, 2005, pp. 619-633. doi:10.2355/isijinternational.45.619

[4]   M. A. Barron and I. Hilerio, “Numerical Analysis of Slag Splashing in a Steelmaking Converter,” Computer Technology and Application, Vol. 2, No. 9, 2011, pp. 828-834.

[5]   T. R. Galiullin, E. V. Protopopov, V. V. Sokolov and A. G. Chernyatevich, “Gas-Jet Conditions in the Slag Coating of Oxygen-Converter Linings,” Steel in Translation, Vol. 38, No. 2, 2008, pp. 97-100. doi:10.3103/S0967091208020010

[6]   K. D. Peaslee, “Physical Modelling of Slag Splashing in the BOF,” Iron and Steel Engineer, Vol. 73, 1996, pp. 33-37.

[7]   M. J. Luomala, T. M. J. Fabritius, E. O. Virtanen, T. P. Siivola, T. L. J. Fabritius, H. Tenkku and J. J. Härkki, “Physical Model Study of Selective Slag Splashing in the BOF,” ISIJ International, Vol. 42, No. 11, 2002, pp. 1219-1224. doi:10.2355/isijinternational.42.1219

[8]   K. D. Peaslee and W. Chen, “Important Factors for Effective Slag Splashing,” CIM Conference Proceedings, Edmonton, 2004.

[9]   O. Olivares, A. Elias, R. Sanchez, M. Diaz-Cruz and R. D. Morales, “Physical and Mathematical Models of Gas-Liquid Fluid Dynamics in LD Converters,” Steel Research, Vol. 73, 2002, pp. 44-51.

[10]   N. Standish and Q. L. He, “Drop Generation due to an Impinging Jet and the Effect of Bottom Blowing in the Steelmaking Vessel,” ISIJ International, Vol. 29, No. 6, 1989, pp. 455-461. doi:10.2355/isijinternational.29.455

[11]   Q. L. He and N. Standish, “A Model Study of Droplet Generation in the BOF Steelmaking,” ISIJ International, Vol. 30, No. 4, 1990, pp. 305-309. doi:10.2355/isijinternational.30.305

[12]   R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” 2nd Edition, Wiley, New York, 2002.

[13]   B. G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S. P. Vanka and M. B. Assar, “Comparison of Four Methods to Evaluate Fluid Velocities in a Continuous Slab Casting Mold,” ISIJ International, Vol. 41, No. 10, 2001, pp. 1262-1271. doi:10.2355/isijinternational.41.1262

[14]   M. Thomadakis and M. Leschziner, “A Pressure-Correction Method for the Solution of Incompressible Viscous Flows on Unstructured Grids,” International Journal for Numerical Methods in Fluids, Vol. 22, No. 7, 1996, pp. 581-601. doi:10.1002/(SICI)1097-0363(19960415)22:7<581::AID-FLD365>3.0.CO;2-R

[15]   C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, Vol. 39, No. 1, 1981, pp. 201-225.