Soft  Vol.2 No.2 , June 2013
Photoisomerization of Provitamin D in Hydrogel Matrix
Abstract: Study of interfacial processes between incorporated biomolecules and hydrogel matrix is of primary importance for the application of synthetic hydrogels as biomaterials, sensors, etc. Their hydrophilic nature, however, hampers fat-soluble biomolecule incorporation. We synthesized N-isopropylacrylamide (NIPAAm)- and Acrylamide (AA)-based hydrogels with hydrophilic-lipophilic balance that under specific conditions permit homogeneous incorporation of provitamins D3(7-dehydrocholesterol) and D2(ergosterol) dissolved in ethanol. Similarity of provitamins D photoisomerization in such hydrogel matrices with the photoreaction in ethanol shows great potential of the novel material for personal dosimetry of biologically active ‘antirachitic’ UV radiation.  
Cite this paper: Terenetskaya, I. , Samchenko, Y. , Orlova, T. , Pasmurceva, N. , Kapinos, P. , Boldeskul, I. and Ulberg, Z. (2013) Photoisomerization of Provitamin D in Hydrogel Matrix. Soft, 2, 8-12. doi: 10.4236/soft.2013.22003.

[1]   I. P. Terenetskaya, O. G. Dmitrenko and A. M. Eremenko, “Conformational Control in Previtamin D Photochemistry by Heterogeneous Reaction Media,” Research on Chemical Intermediates, Vol. 21, No. 6, 1995, pp. 653-664. doi:10.1163/156856795X00495

[2]   O. G. Dmitrenko, I. P. Terenetskaya and W. Reischl, “Solvent Effect on Previtamin D Conformational Equilibrium and Its Photoreactions,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 104, No. 1-3, 1997, pp. 113-117. doi:10.1016/S1010-6030(97)04597-8

[3]   I. Gvozdovskyy, T. Orlova and I. Terenetskaya “Features of Previtamin D cistrans Isomerization in the Nematic LC Matrices: Orientation and Cholesteric Order Effects,” Molecular Crystals and Liquid Crystals, Vol. 434, No. 1, 2005, pp. 325-332. doi:10.1080/15421400590955361

[4]   T. N. Orlova and I. P. Terenetskaya, “Specific Features of Photoisomerization of Provitamin D3 in a Cholesteric Liquid Crystal,” Optics and Spectroscopy, Vol. 104, 2010, pp. 584-589. doi:10.1134/S0030400X10040156

[5]   T. N. Orlova, I. P. Terenetskaya, A. M. Eremenko and N. I. Surovtseva, “Provitamin D Doped Silica and Polymeric Films: New Materials for UV Biosensor,” Materials Sciences and Applications, Vol. 1, 2010, pp. 267-271.

[6]   O. Wichterle and D. Lim, “Hydrophilic Gels for Biological Use,” Nature, Vol.185, 1960, pp. 117-118. doi:10.1038/185117a0

[7]   T. Tanaka, “Gels, Encyclopedia of Polymer Science and Engineering,” Wiley, New York, 1987, pp. 514-520.

[8]   I. Galaev and B. Mattiasson, “‘Smart’ Polymers and What They Could Do in Biotechnology and Medicine,” Trends in Biotechnology, Vol. 17, No. 8, 1999, pp. 336-340. doi:10.1016/S0167-7799(99)01345-1

[9]   C. S. Brazel and N. A. Peppas, “Pulsatile Local Delivery of Thrombolytic and Antithrombotic Agents Using Poly- (N-isopropyl acrylamideo-methacrylic acid) Hydrogels,” Journal of Controlled Release, Vol. 39, No. 1, 1996, pp. 57-64. doi:10.1016/0168-3659(95)00134-4

[10]   N. A. Plate, T. L. Lebedeva and L. I. Valuev, “Lower Critical Solution Temperature in Aqueous Solutions of N-alkyl-substituted Polyacrylamides,” Polymer Journal, Vol. 31, 1999, pp. 21-27. doi:10.1295/polymj.31.21

[11]   Yu. Samchenko, Z. Ulberg and O. Korotych “Multi-purpose Smart Hydrogel Systems,” Advances in Colloid and Interface Science, Vol. 168, No. 1-2, 2011, pp. 247-262. doi:10.1016/j.cis.2011.06.005

[12]   I. Terenetskaya, “Spectral Monitoring of Biologically Active Solar UVB Radiation Using an in Vitro Model of Vitamin D Synthesis,” Talanta, Vol. 53, No. 1, 2000, pp. 195-203. doi:10.1016/S0039-9140(00)00459-8

[13]   O. Korotych, Yu. Samchenko, I. Boldeskul, Z. Ulberg, N. Zholobak and L. Sukhodub, “N-Isopropylacrylamide- Based Fine-Dispersed Thermosensitive Ferrogels Obtained via in-Situ Technique,” Materials Science and Engineering C, Vol. 33, 2013, pp. 892-900.

[14]   E. Havinga, “Vitamin D, Example and Challenge,” Experentia, Vol. 29, No. 10, 1973, pp. 81-93. doi:10.1007/BF01935064

[15]   J. C. Sternberg, H. S. Stillo and R. H. Schwendeman, “Spectrophotometric Analysis of Multicomponent Systems Using the Least Squares Method in Matrix Form. The Ergosterol Irradiation System,” Analytical Chemistry, Vol. 32, No. 1, 1960, pp. 84-90. doi:10.1021/ac60157a025

[16]   H. J. C. Jacobs and E. Havinga, “Photochemistry of Vitamin D and Its Isomers and of Simple Trienes,” Advances in Photochemistry, Vol. 11, 1979, pp. 305-373.

[17]   I. P. Terenetskaya, O. G. Perminova and A. M. Yeremenko, “Effect of Environment on the Conformational Equilibrium and Photoconversions of Previtamin D,” Journal of Molecular Structure, Vol. 267, 1992, pp. 93-98. doi:10.1016/0022-2860(92)87015-N

[18]   J. K. Yamamoto and R. F. Borch, “Regulation of Cutaneous Previtamin D Photosynthesis in Man Skin: Conversion of 7-Dehydrocholesterol to Vitamin D3 in Synthetic Phospholipid Bilayers,” Biochemistry, Vol. 24, No. 13, 1985, pp. 3338-3344. doi:10.1021/bi00334a039

[19]   R. M. Moriarty, R. N. Schwartz, C. Lee and V. Curtis, “Formation of Vitamin D3 in Synthetic Lipid Multibilayers. A Model for Epidermal Photosynthesis,” Journal of the American Chemical Society, Vol. 102, No. 12, 1980, pp. 4257-4259. doi:10.1021/ja00532a047

[20]   O. N. Galkin and I. P. Terenetskaya, “Vitamin D Biodo-simeter: Basic Characteristics and Prospect Applications,” Journal of Photochemistry and Photobiology B: Biology, Vol. 53, 1999, pp. 12-19. doi:10.1016/S1011-1344(99)00115-3

[21]   I. P. Terenetskaya, “Provitamin D Photoisomerization as Possible UVB Monitor: Kinetic Study Using Tunable Dye Laser,” SPIE Proceedings, Vol. 2134B, 1994, pp. 135-140. doi:10.1117/12.180825

[22]   A. W. Norman and R. Bouillon, “Vitamin D Nutrition Policy Needs a Vision for Future,” Experimental Biology and Medicine, Vol. 235, 2010, pp. 1034-1045.