JBiSE  Vol.6 No.6 , June 2013
Multivariate and wavelet techniques of spontaneous electroencephalography and event related potentials during children maturation
—The role of phase resetting

The purpose of this study is to analyze whether the maturation of spontaneous EEG occurs at the same rate as Late Positive Component (LPC) maturation. To that end, the spontaneous EEG rhythms power spectral density (PSD) and the LPC component in a group of children and a group of young adults were obtained and analyzed by means of Spearman’s correlation coefficients, hierarchical clustering, Principal Component Analysis (PCA) and topographical analysis. The multivariate analysis revealed a co-maturation of LPC with the delta band. This co-maturation was more evident in the more posterior region. The multivariate analysis results suggest that the maturation of the two components is temporally closely associated. The LPC in both children and young adults was produced by a combination of increase of Event Related Spectral Perturbation (ERSP) and phase resetting in the delta band. It can be suggested that the maturations of delta and LPC are functionally interdependent due to a possible origin of LPC as a delta phase resetting and/or because both processes depend on the same fraction of synaptic pruning.

Cite this paper: Barriga-Paulino, C. , Flores, A. , Rodríguez-Martínez, E. , Chinchilla, C. and Gómez, C. (2013) Multivariate and wavelet techniques of spontaneous electroencephalography and event related potentials during children maturation
—The role of phase resetting
. Journal of Biomedical Science and Engineering, 6, 669-682. doi: 10.4236/jbise.2013.66082.

[1]   Barriga-Paulino, C.I., Flores, A. and Gómez. C.M. (2011) Developmental of spontaneous EEG. Journal of Psychophysiology, 25, 143-158. doi:10.1027/0269-8803/a000052

[2]   Matousek, M. and Petersén, I. (1973) Frequency analysis of the EEG in normal children and adolescents. In: Kellaway, P. and Petersén, I., Eds., Automation of Clinical Electroencephalography. Raven Press, New York, pp. 75102.

[3]   Somsen, R.J.M., Klooster, B.J., Van der Molen M.W., Van Leeuwen, H.M.P. and Licht, R. (1997) Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biological Psychology, 44, 187209. doi:10.1016/S0301-0511(96)05218-0

[4]   Basar, E., Basar-Eroglu, C., Rosen, B. and Schutt, A. (1984) A new approach to endogenous event-related potentials in man: Relation between EEG and P300-wave. International Journal of Neuroscience, 24, 1-21. doi:10.3109/00207458409079530

[5]   Courchesne, E. (1978) Neurophysiological correlates of cognitive development: Changes in long-latency eventrelated potentials from childhood to adulthood. Electroencephalography and Clinical Neurophysiology, 45, 468482. doi:10.1016/0013-4694(78)90291-2

[6]   Fuchigami, T., Okubo, O., Ejiri, K., Fujita, Y., Kohira, R. and Noguchi, Y. (1995) Developmental changes in P300 wave elicited during two different experimental conditions. Pediatric Neurology, 13, 25-28. doi:10.1016/0887-8994(95)00086-U

[7]   Oades, R.D., Dittmann-Balcar, A. and Zerbin, D. (1997) Development and topography of auditory event-related potentials (ERPs): Mismatch and processing negativity in individuals 8 22 years of age. Psychophysiology, 34, 677-693. doi:10.1111/j.1469-8986.1997.tb02143.x

[8]   Thomas, K.M. and Nelson, C.A. (1996) Age-related changes in the electrophysiological response to visual stimulus novelty: A topographical approach. Electroencephalography and Clinical Neurophysiology, 98, 294-308. doi:10.1016/0013-4694(95)00280-4

[9]   Van der Stelt, O., Kok, A., Smulders, F.T., Snel, J. and Boudewijn Gunning, W. (1998) Cerebral event-related potentials associated with selective attention to color: developmental changes from childhood to adulthood. Psychophysiology, 35, 227-239. doi:10.1111/1469-8986.3530227

[10]   Berman, S., Friedman, D. and Cramer, M. (1990) A developmental study of event-related potentials during explicit and implicit memory. International Journal of Psychophysiology, 10, 191-197. doi:10.1016/0167-8760(90)90034-B

[11]   Flores, A., Gómez, C.M. and Meneres, S. (2010) Evaluation of spatial validity-invalidity by the P300 component in children and young adults. Brain Research Bulletin, 81, 525-533. doi:10.1016/j.brainresbull.2010.01.005

[12]   Klimesch, W. (1995) The P300 wave and band power in the alpha and theta range. Psycoloquy, 6.

[13]   Intriligator, J. and Polich, J. (1994) On the relationship between background EEG and the P300 event-related potential. Biological Psychology, 37, 207-218. doi:10.1016/0301-0511(94)90003-5

[14]   Intriligator, J. and Polich, J. (1995) On the relationship between EEG and ERP variability. International Journal of Psychophysiology, 20, 59-74. doi:10.1016/0167-8760(95)00028-Q

[15]   Klimesch, W., Schimke, H. and Pienert, C. (1995) Frequency components of the P300. Psycoloquy, in press..

[16]   Digiacomo, M.R., Gómez, C.M. and Flores, A.B. (2007) Alpha reduction and event-related potentials, theta and gamma increase linked to letter selection. Neuroreport, 18, 729-733. doi:10.1097/WNR.0b013e3280c1e370

[17]   Basar, E., Basar-Eroglu, C., Röschke, J. and Schütt, A. (1989) The EEG is a quasi-deterministic signal anticipating sensory-cognitive tasks. In: Basar, E. and Bullock, T.H., Eds., Brain Dynamics: Progress and Perspectives, Springer-Verlag, Berlin, 43-71.

[18]   Jasiukaitis, P. and Hakerem, G. (1988) The effect of prestimulus alpha activity on P300. Psychophysiology, 25, 157-165. doi:10.1111/j.1469-8986.1988.tb00979.x

[19]   Polich, J. (1997) EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology, 104, 244-256. doi:10.1016/S0168-5597(97)96139-6

[20]   Pritchard, W.S., Brandt, M.E., Shappell, J., ODell, T. and Barrett, E.S. (1985) P300 amplitude/prestimulus EEG power relationships. Psychophysiology, 22, 210.

[21]   Verleger, R. (1995) Memory-related EEG potentials: Slow negativities, priming positivity, recognition positivity, and Dm. Psycoloquy, 6.

[22]   Digiacomo, M., Marco-Pallarés, J., Flores, A. and Gómez, C.M. (2008) Wavelet analysis of the EEG during the neurocognitive evaluation of invalidly cued targets. Brain Research, 1234, 94-103. doi:10.1016/j.brainres.2008.07.072

[23]   Lagerlund, T.D., Sharbrough, F.W. and Busacker, N.E. (1997) Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. Journal of Clinical Neurophysiology, 14, 73-82. doi:10.1097/00004691-199701000-00007

[24]   Gorsuch, R.L. (1983) Factor analysis. 2nd Edition, L. Erlbaum Associates, Hillsdale.

[25]   Tallon-Baudry, C., Bertrand, O., Delpuech, C. and Permier, J. (1997) Oscillatory gamma-band (30 70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17, 722-734.

[26]   Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J. and Giedd, J. (2006) Intellectual ability and cortical development in children and adolescents. Nature, 440, 676-679. doi:10.1038/nature04513

[27]   Shaw, P., Kabani, N.J., Lerch, J.P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Evans, A., Rapoport, J.L., Giedd, J.N. and Wise, S.P. (2008) Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 3586-3594. doi:10.1523/JNEUROSCI.5309-07.2008

[28]   Yordanova, J. and Kolev, V. (1998). Developmental changes in the theta response system: A single sweep analysis. Journal of Psychophysiology, 12, 113-126.

[29]   Basar-Eroglu, C., Basar, E., Demiralp, T. and Schürmann, M. (1992) P300-response: Possible psychophysiological correlates in delta and theta frequency channels. A review. International Journal of Psychophysiology, 13, 161-179. doi:10.1016/0167-8760(92)90055-G

[30]   Basar-Eroglu, C., Demiralp, T., Schürmann, M. and Basar, E. (2001) Topological distribution of oddball ‘P300' responses. International Journal of Psychophysiology, 39, 213-220. doi:10.1016/S0167-8760(00)00142-2

[31]   Yordanova, J., Kolev, V. and Polich, J. (2001). P300 and alpha event-related desynchronization (ERD). Psychophysiology, 38, 143-152. doi:10.1111/1469-8986.3810143

[32]   Mecklinger, A., Kramer, A.F. and Strayer, D.L. (1992) Event-related potentials and EEG components in a semantic memory search task. Psychophysiology, 29, 104119. doi:10.1111/j.1469-8986.1992.tb02021.x

[33]   Hudspeth, W.J. and Pribram, K.H. (1992) Psychophysiological indices of cerebral maturation. International Journal of Psychophysiology, 12, 19-29. doi:10.1016/0167-8760(92)90039-E

[34]   Giedd, J.N. (2004) Structural magnetic resonance imaging of the adolescent brain. Annuals of New York Academy of Sciences, 1021, 77-85. doi:10.1196/annals.1308.009

[35]   Keshavan, M.S., Diwadkar, V.A., DeBellis, M., Dick, E., Kotwal, R., Rosenberg, D.R., Sweeney, J.A., Minshew, N. and Pettegrew, J.W. (2002) Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sciences, 70, 1909-1922. doi:10.1016/S0024-3205(02)01492-3

[36]   Sowell, E.R., Trauner, D.A., Gamst, A. and Jernigan, T.L. (2002) Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study. Developmental Medicine & Child Neurology, 44, 4-16. doi:10.1017/S0012162201001591

[37]   Paus, T., Collins, D.L., Evans, A.C., Leonard, G., Pike, B. and Zijdenbos, A. (2000) Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54, 255-266.

[38]   Whitford, T.J., Rennie, C.J., Grieve, S.M., Clark, C.R., Gordon, E. and Williams, L.M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28, 228-237. doi:10.1002/hbm.20273