OJFD  Vol.3 No.2 , June 2013
On the Boundary Layer Flow over a Moving Surface in a Fluid with Temperature-Dependent Viscosity
ABSTRACT
 This paper examines a boundary layer flow over a continuously moving heated flat surface with velocity  in a streaming flow with velocity  and with temperature dependent viscosity. The momentum and the energy equations are coupled through the viscous dissipation term. The coupled boundary layer equations are transformed into a self-similar form using an appropriate similarity variable. An efficient numerical technique is used to solve the self-similar boundary layer equations. It is shown that at low enough values for the velocity ratio , an increase in viscous dissipation enhances greatly the local heat transfer leading to temperature overshoots adjacent to the wall. The viscosity variation parameter is shown to have significant effects on the temperature dependent viscosity and the velocity and temperature distribution within the boundary layer.


Cite this paper
E. Mureithi, J. Mwaonanji and O. Makinde, "On the Boundary Layer Flow over a Moving Surface in a Fluid with Temperature-Dependent Viscosity," Open Journal of Fluid Dynamics, Vol. 3 No. 2, 2013, pp. 135-140. doi: 10.4236/ojfd.2013.32017.
References
[1]   B. C. Sakiadis, “Boundary Layer Behavior on Continuous Solid Surfaces: II Boundary Layer on a Continuous Flat Surface,” American Institute of Chemical Engineers Journal, Vol. 7, No. 2, 1961, pp. 221-225. doi:10.1002/aic.690070211

[2]   F. Tsou, E. M. Sparrow and J. R. Goldstein, “Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface,” International Journal of Heat and Mass Transfer, Vol. 10, No. 2, 1967, pp. 219-235. doi:10.1016/0017-9310(67)90100-7

[3]   M. E. Ali, “On the Thermal Boundary Layer on a Power-Law Stretched Surface with Suction or Injection,” International Journal of Heat and Fluid Flow, Vol. 16, No. 4, 1995, pp. 280-290. doi:10.1016/0142-727X(95)00001-7

[4]   E. M. Elbashbeshy, “Heat Transfer over a Stretching Surface with Variable Surface Heat Flux,” Journal of Physics D: Applied Physics, Vol. 31, No. 16, 1998, pp. 1951-1954. doi:10.1088/0022-3727/31/16/002

[5]   E. Magyari and B. Keller, “Heat and Mass Transfer in the Boundary Layer on an Exponentially Stretching Continuous Surface,” Journal of Physics D: Applied Physics, Vol. 32, No. 5, 1999, pp. 577-585. doi:10.1088/0022-3727/32/5/012

[6]   E. W. Mureithi, “Stability Properties of a Boundary Layer Flow Past a Continuously Moving Wall in a Streaming Flow,” International Journal of Fluid Mechanics Research, Vol. 33, No. 5, 2006, pp. 430-444. doi:10.1615/InterJFluidMechRes.v33.i5.40

[7]   T. A. Abdelhafez, “Skin Friction and Heat Transfer on a Continuous Flat Surface Moving in a Parallel Free Stream,” International Journal of Heat and Mass Transfer, Vol. 28, No. 6, 1985, pp. 1234-1237. doi:10.1016/0017-9310(85)90132-2

[8]   P. R. Chappidi and F. S. Gunnerson, “Analysis of Heat and Momentum Transport along a Moving Surface,” International Journal of Heat and Mass Transfer, Vol. 32, No. 7, 1989, pp. 1383-1386. doi:10.1016/0017-9310(89)90039-2

[9]   N. Afzal, A. Badaruddin and A. A. Elgarvi, “Momentum and Heat Transport on a Continuous Flat Surface Moving in a Parallel Stream,” International Journal of Heat and Mass Transfer, Vol. 36, No. 13, 1993, pp. 3399-3403. doi:10.1016/0017-9310(93)90022-X

[10]   H. T. Lin and S. F. Huang, “Flow and Heat Transfer of Plane Surface Moving in Parallel and Reversely to the Free Stream,” International Journal of Heat and Mass Transfer, Vol. 37, No. 2, 1994, pp. 333-336. doi:10.1016/0017-9310(94)90104-X

[11]   N. Afzal, “Momentum Transfer on Power Law Stretching Plate with Free Stream Pressure Gradient,” International Journal of Engineering Science, Vol. 41, No. 11, 2003, pp. 1197-1207. doi:10.1016/S0020-7225(03)00002-8

[12]   J. X. Lings and A. Dybbs, “Forced Convection over a Flat Plate Submerged in a Porous Medium; Variable Viscosity Case,” ASME, New York, 1987.

 
 
Top