OJFD  Vol.3 No.2 , June 2013
Numerical Simulation of Water Impact on a Wave Energy Converter in Free Fall Motion
Abstract: Results are presented for the 3D numerical simulation of the water impact of a wave energy converter in free fall and subsequent heave motion. The solver, AMAZON-3D, employs a Riemann-based finite volume method on a Cartesian cut cell mesh. The computational domain includes both air and water regions with the air/water boundary captured automatically as a discontinuity in the density field thereby admitting break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy. Cartesian cut cells are used to provide a boundary-fitted grid at all times. The code is validated by experimental data including the free fall of a cone and free decay of a single Manchester Bobber component.
Cite this paper: Z. Hu, D. Causon, C. Mingham and L. Qian, "Numerical Simulation of Water Impact on a Wave Energy Converter in Free Fall Motion," Open Journal of Fluid Dynamics, Vol. 3 No. 2, 2013, pp. 109-115. doi: 10.4236/ojfd.2013.32014.




[4]   M. Alves, H. Traylor and A. Sarmento, “Hydrodynamic Optimization of Wave Energy Converter Using a Heave Motion Buoy,” The 7th European Wave and Tidal Energy Conference, Portugal, 2007.

[5]   M. Vantorre, M. Banasiak and R. Verhoeven, “Modelling of Hydraulic Performance and Wave Energy Extraction by a Point Absorber in Heave,” Applied Ocean Research, Vol. 26, No. 1-2, 2004, pp. 61-72. doi:10.1016/j.apor.2004.08.002

[6]   M. Greenhow and W. M. Lin, “Non Linear Free Surface Effects; Experiments and Theory,” Report No. 83-19, Department of ocean engineering, Cambridge, 1983.

[7]   M. Greenhow, “Wedge Entry into Initially Calm Water,” Journal of Applied Ocean Research, Vol. 9, No. 1, 1987, pp. 214-223. doi:10.1016/0141-1187(87)90003-4

[8]   R. Zhao and O. M. Faltinsen, “Water Entry of Two-Dimensional Bodies,” Journal of Fluid Mechanics, Vol. 246, 1993, pp. 593-612. doi:10.1017/S002211209300028X

[9]   X. Mei, Y. Lui and D. K. P. Yue, “On the Water Impact of General Two-Dimensional Sections,” Applied Ocean Research, Vol. 21, No. 1, 1999, pp. 1-15. doi:10.1016/S0141-1187(98)00034-0

[10]   I. M. C. Campbell and P. A. Weynberg, “Measurement of Parameters Affecting Slamming,” Report No. 440, Wolfson Unit of Marine Technology, Southampton, 1980.

[11]   G. X. Wu, H. Sun and H. S. He, “Numerical Simulation and Experimental Study of Water Entry of a Wedge in Free Fall Motion,” Journal of Fluids and Structures, Vol. 19, No. 3, 2004, pp. 277-289. doi:10.1016/j.jfluidstructs.2004.01.001

[12]   E. M. Yettou, A. Desrochers and Y. Champoux, “Experimental Study on the Water Impact of a Symmetrical Wedge,” Fluid Dynamics Research, Vol. 38, No. 1, 2006, pp. 47-66. doi:10.1016/j.fluiddyn.2005.09.003

[13]   G. D Backer, M. Vantorre, S. Victor, J. D. Rouck and C. Beels, “Investigation of Vertical Slamming on Point Absorbers,” Proceedings of 27th International Conference on Offshore and Arctic Engineering (OMAE), Estoril, 15-20 June 2008, pp. 851-859.

[14]   Z. Z. Hu, D. M. Causon, C. G. Mingham and L. Qian, “Numerical Simulation of Floating Bodies in Extreme Free Surface Waves,” Journal of Natural Hazards and Earth System Sciences, Vol. 11, No. 2, 2011, pp. 519-527. doi:10.5194/nhess-11-519-2011

[15]   Z. Z. Hu, D. M. Causon, C. G. Mingham and L. Qian, “Numerical Simulation of Water Impact Involving Three Dimensional Rigid Bodies of Arbitrary Shape,” Proceedings of 32nd International Conference on Coastal Engineering (ICCE) Conference, Shanghai, 30 June 2010-5 July 2010.

[16]   D. K. Clarke, M. D. Salas and H. A. Hassan, “Euler Calculations for Multi-Element Airfoils Using Cartesian Meshes,” 1986.

[17]   G. Yang, D. M. Causon, D. M. Ingram, R. Saunders and P. A. Batten, “A Cartesian Cut Cell Method for Compressible Flows—Part A: Static Body Problems,” Aeronautical Journal of the Royal Aeronautical Society, Vol. 101, No. 1001, 1997, pp. 47-56.

[18]   L. Qian, D. M. Causon, C. G. Mingham and D. M. Ingram, “A Free-Surface Capturing Method for Two Fluid Flows with Moving Bodies,” Proceedings of the Royal Society London A, Vol. 462, No. 2065, 2006, pp. 21-42. doi:10.1098/rspa.2005.1528

[19]   D. Pan and H. Lomax, “A New Approximate LU Factorization Scheme for the Navier-Stokes Equations,” The American Institute of Aeronautics and Astronautics Journal, Vol. 26, No. 2, 1988, pp. 163-171.

[20]   S. Thomas, S. Weller and T. Stallard, “Float Response within an Array: Numerical and Experimental Comparison,” Proceedings of the 2nd International Conference on Ocean Energy, Brest, 15-17 October 2008.