Hamiltonian Formulation for Water Wave Equation

Show more

References

[1] G. B. Whitham, “A General Approach to Linear and Non-Linear Dispersive Waves Using a Lagrangian,” Journal of Fluid Mechanics, Vol. 22, No. 2, 1965, pp. 273-283. doi:10.1017/S0022112065000745

[2] J. C. Luke, “A Variational Principle for a Fluid with a Free Surface,” Journal of Fluid Mechanics, Vol. 27, No. 2, 1967, pp. 395-397. doi:10.1017/S0022112067000412

[3] V. E. Zakharov, “Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid,” Journal of Applied Mechanics and Technical Physics, Vol. 9, No. 2, 1968, pp. 190-194.

[4] A. C. Radder, “Hamiltonian Dynamics of Water Waves,” Advanced Series on Ocean Engineering, Vol. 4, 1999, pp. 21-59. doi:10.1142/9789812797551_0002

[5] R. Salmon, “Geophysical Fluid Dynamics,” Oxford University Press, Oxford, 1988.

[6] V. E. Zakharov and E. A. Kuznetsov, “Hamiltonian Formalism for Nonlinear Waves,” Physics Uspekhi, Vol. 40, No. 11, 1997, pp. 1087-1116.
doi:10.1070/PU1997v040n11ABEH000304

[7] P. A. Madsen, H. R. Bingham and H. A. Schoffer, “Boussinesq-Type Formulations for Fully Non-Linear and Extremely Dispersive Water Waves: Derivation and Analysis,” Proceedings of the Royal Society of London, Vol. 459, No. 2033, 2003, pp. 1075-1104.
doi:10.1098/rspa.2002.1067

[8] O. S. Madsen, S. Pahuja, H. Zhang and E. S. Chan, “A Diffusive Transport Mechanism for Fine Sediments,” Proceedings of the 28th International Conference on Coastal Engineering, Cardiff, 2003, pp. 741-753.

[9] G. B. Whitham, “Variational Methods and Applications to Water Waves,” Proceedings of the Royal Society A, Vol. 299, No. 1, 1967, pp. 6-25.

[10] J. W. Miles, “On Hamilton’s Principle for Surface Waves,” Journal of Fluid Mechanics, Vol. 83, No. 1, 1977, pp. 153-158. doi:10.1017/S0022112077001104

[11] D. M. Milder, “A Note Regarding ‘On Hamilton’s Principle for Surface Waves’,” Journal of Fluid Mechanics, Vol. 83, No. 1, 1977, pp. 159-161.
doi:10.1017/S0022112077001116

[12] A. C. Radder, “An Explicit Hamiltonian Formulation of Surface Waves in Water of Finite Depth,” Journal of Fluid Mechanics, Vol. 237, 1992, pp. 435-455.
doi:10.1017/S0022112092003483

[13] T. Y. Hou and P. Zhang, “Convergence of a Boundary Integral Method for 3-D Water Waves,” Discrete and Continuous Dynamical Systems, Series B, Vol. 2, No. 1, 2002, pp. 1-34. doi:10.3934/dcdsb.2002.2.1

[14] D. Ambrosi, “Hamiltonian Formulation for Surface Waves in a Layered Fluid,” Wave Motion, Vol. 31, No. 1, 2000, pp. 71-76. doi:10.1016/S0165-2125(99)00024-4

[15] Y. Lvov and E. G. Tabak, “A Hamiltonian Formulation for Long Internal Waves,” Physica D, Vol. 195, 2004, pp. 106-122. doi:10.1016/j.physd.2004.03.010

[16] Y. Hongli, S. Jinbao and Y. Liangui, “Water Wave Solutions Obtained by Variational Method,” Chinese Journal of Oceanology and Limnology, Vol. 24, No. 1, 2006, pp. 87-91. doi:10.1007/BF02842780

[17] J. J. Stoker, “Water Waves,” 1957.

[18] L. Debnath, “A Variational Principle for Nonlinear Water Waves,” Acta Mechanica, Vol. 72, No. 1-2, 1988, pp. 155-160. doi:10.1007/BF01176549

[19] L. Debnath, “On Initial Development of Axisymmetrio Waves in Fluids of Finite Depth,” Proceedings of the National Institute of Sciences of India, Vol. 85, 1969, pp. 567-585.

[20] C. R. Mondal, “Uniform Asymptotic Analysis of Shallow-Water Waves Due to a Periodic Surface Pressure,” Quarterly of Applied Mathematics, 1986, pp. 133-140.

[21] N. C. Mahanti, “Small-Amplitude Internal Waves Due to an Oscillatory Pressure,” Quarterly of Applied Mathematics, Vol. 37, 1997, pp. 92-97.

[22] T. B. Benjamin, “Instability of Periodic Wavetrains in Nonlinear Dispersive Systems,” Proceedings of the Royal Society of London Series A, Vol. 299, No. 1456, 1967, pp. 59-76. doi:10.1098/rspa.1967.0123