JBNB  Vol.4 No.3 A , June 2013
Phenolic Compounds Hybrid Detectors
ABSTRACT

Phenolic compounds are among the major classes of pollutants produced by industrial and agricultural activities. The amperometric biosensors have been mainly applied to the determination of phenolic compounds because of the advantages such as good selectivity, low cost, and easy automation. Amperometry is a method to measure the electric current that flows as a result of reactions generated at the electrode. Amperometric phenol biosensors are most often based on tyrosinase, laccase or horseradish peroxidase immobilized on the electrode surface. The immobilization of enzymes into ordered thin materials has attracted considerable attention over the past few years. The present researches have demonstrated that biomolecules immobilized in different matrixes retain their functional characteristics to a large extent. These new materials are of great interest for applications as biosensors and biocatalysts. Lately, also conducting polymers have attracted much interest in the development of biological sensors. The electrically conducting polymers are known as possessing many interesting features, which allow them to act as excellent materials for immobilization of biomolecules.


Cite this paper
J. Sołoducho and J. Cabaj, "Phenolic Compounds Hybrid Detectors," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 17-27. doi: 10.4236/jbnb.2013.43A003.
References
[1]   E. A. Cummings, S. Linquette-Mailley, P. Mailley, S. Cosnier, B. R. Eggins and E. T. McAdams, “A Comparison of Amperometric Screen-Printed, Carbon Electrodes and Their Application to the Analysis of Phenolic Compounds Present in Beers,” Talanta, Vol. 55, No. 3, 2001, pp. 1015-1027. doi:10.1016/S0039-9140(01)00532-X

[2]   H. M. Tan, S. P. Cheong and T. C. Tan, “An Amperometric Benzene Sensor Using Whole Cell Pseudomonas putida ML2,” Biosensors & Bioelectronics, Vol. 9, No. 1, 1994, pp. 1-8. doi:10.1016/0956-5663(94)80008-1

[3]   S. C. Chang and C. J. Mc Neil, “Disposable Tyrosinase-Peroxidase Bi-Enzyme Sensor for Amperometric Detection of Phenols,” Biosensors & Bioelectronics, Vol. 17, No. 11, 2002, pp. 1015-1023. doi:10.1016/S0956-5663(02)00094-5

[4]   J. Wang and Q. Chen, “Remote Electrochemical Biosensor for Field Monitoring of Phenolic Compounds,” Analytica Chimica Acta, Vol. 312, No. 1, 1995, pp. 39-44. doi:10.1016/0003-2670(95)00207-G

[5]   J. Wang, J. Lu, S. Y. Ly, B. Tian, W. K. Adeniyi and R. A. Armendariz, “Lab-on-a-Cable for Electrochemical Monitoring of Phenolic Contaminants,” Analytical Chemistry, Vol. 72, No. 11, 2000, pp. 2659-2663. doi:10.1021/ac991054y

[6]   T. Kuwahara, K. Oshima, M. Shimomura and S. Miyauchi, “Glucose Sensing with Glucose Oxidase Immobilized Covalently on the Films of Thiophene Copolymers,” Synthetic Metals, Vol. 152, No. 1-3, 2005, pp. 29-32. doi:10.1016/j.synthmet.2005.07.096

[7]   J. Cabaj and J. Soloducho, “Hybrid Film Biosensor for Phenolic Compounds Detection in Environmental Biosensors,” V. Somerset, Ed., InTech, Rijeka, 2011.

[8]   J. Cabaj, J. Soloducho and A. Nowakowska-Oleksy, “Langmuir-Blodgett Film Based Biosensor for Estimation of Phenol Derivatives,” Sensors and Actuators B, Vol. 143, No. 2, 2010, pp. 508-515. doi:10.1016/j.snb.2009.09.047

[9]   K. F. Fernandes, C. S. Lima, F. M. Lopes and C. H. Collins, “Hydrogen Peroxide Detection System Consisting of Chemically Immobilised Peroxidase and Spectrometer,” Process Biochemistry, Vol. 40, No. 11, 2005, pp. 3441-3445. doi:10.1016/j.procbio.2005.04.003

[10]   S. S. Rosatto, G. Oliveira-Neto and L. T. Kubota, “Effect of DNA on the Peroxidase Based Biosensor for Phenol Determination in Waste Waters,” Analytica Chimica Acta, Vol. 13, No. 6, 2001, pp. 445-450.

[11]   G. Marko-Varga, J. Emneus, L. Gorton and T. Ruzgas, “Development of Enzyme Based Amperometric Sensors for the Determination of Phenolic Compounds,” Trends in Analytical Chemistry, Vol. 14, No. 1, 1995, pp. 319328. doi:10.1016/0165-9936(95)97059-A

[12]   A. L. Ghindilis, V. P. Gavrilova and A. I. Yaropolov, “Laccase-Based Biosensor for Determination of Polyphenols: Determination of Catechols in Tea,” Biosensors & Bioelectronics, Vol. 7, No. 2, 1992, pp. 127-131. doi:10.1016/0956-5663(92)90017-H

[13]   R. S. Freire, N. Duran and L. T. Kubota, “Effects of Fungal Laccase Immobilization Procedures for the Development of a Biosensor for Phenol Compounds,” Talanta, Vol. 54, No. 4, 2001, pp. 681-686. doi:10.1016/S0039-9140(01)00318-6

[14]   J. Wang, R. S. Freire, N. Durán, S. Thongngamdee and L. T. Kubota, “Mixed Enzyme (Laccase/Tyrosinase)-Based Remote Electrochemical Biosensor for Monitoring Phenolic Compounds,” Analyst, Vol. 127, No. 2, 2002, pp. 258-261. doi:10.1039/b110011d

[15]   Y. Wen, B. Zhou, Y. Xu, S. Jin and Y. Feng, “Analysis of Estrogens in Environmental Waters Using Polymer Monolith In-Polyether Ether Ketone Tube Solid-Phase Microextraction Combined with High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 1133, No. 1-2, 2006, pp. 21-28. doi:10.1016/j.chroma.2006.08.049

[16]   G. Gatidou, N. Thomaidis, A. Stasinakis and T. Lekkas, “Simultaneous Determination of the Endocrine Disrupting Compounds Nonylphenol, Nonylphenol Ethoxylates, Triclosan and Bisphenol A in Wastewater and Sewage Sludge by Gas Chromatography-Mass Spectrometry,” Journal of Chromatography A, Vol. 1138, No. 1-2, 2007, pp. 32-41. doi:10.1016/j.chroma.2006.10.037

[17]   A. M. Comerton, R. C. Andrews and D. M. Bagley, “Practical Overview of Analytical Methods for Endocrine-Disrupting Compounds, Pharmaceuticals and Personal Care Products in Water and Wastewater,” Philosophical Transactions of Royal Society A, Vol. 367, No. 1904, 2009, pp. 3923-3939.

[18]   M. A. Mottaleb, S. Usenko, J. G. O’Donnell, A. J. Ramirez, B. W. Brooks and C. K. Chambliss, “Gas Chromatography-Mass Spectrometry Screening Methods for Select UV Filters, Synthetic Musks, Alkylphenols, an Antimicrobial Agent, and an Insect Repellent in Fish,” Journal of Chromatography A, Vol. 1216, No. 5, 2009, pp. 815-823. doi:10.1016/j.chroma.2008.11.072

[19]   H. S. Yin, Y. Zhou and S.-Y. Ai, “Preparation and Characteristic of Cobalt Phthalocyanine Modified Carbon Paste Electrode for Bisphenol A Detection,” Journal of Electroanalytical Chemistry, Vol. 626, No. 1-2, 2009, pp. 80-88. doi:10.1016/j.jelechem.2008.11.004

[20]   C. R. Suri, R. Boro, Y. Nangia, S. Gandhi, P. Sharma, N. Wangoo, K. Rajesh and G. S. Shekhawat, “Immunoanalytical Techniques for Analyzing Pesticides in the Environment,” Trends in Analytical Chemistry, Vol. 28, No. 1, 2009, pp. 29-39. doi:10.1016/j.trac.2008.09.017

[21]   A. F. Le Blanc, C .Albrecht, T. Bonn, P. Fechner, G. Proll, F. Proll, M. Carlquist and G. Gauglitz, “A Novel Analytical Tool for Quantification of Estrogenicity in River Water Based on Fluorescence Labelled Estrogen Receptor,” Analytical and Bioanalytical Chemistry, Vol. 395, No. 6, 2009, pp. 1769-1776. doi:10.1007/s00216-009-3038-8

[22]   A. I. Yaropolov, A. N. Kharybin, J. Emnéus, G. MarkoVarga and L. Gorton, “Flow Injection Analysis of Phenols at a Graphite Electrode Modified with Co-Immobilized Laccase and Tyrosinase,” Analytica Chimica Acta, Vol. 308, 1995, pp. 137-144. doi:10.1016/0003-2670(94)00404-A

[23]   C. Nistor, J. Emnéus, L. Gorton and A. Ciucu, “Improved Stability and Altered Selectivity of Tyrosinase Based Graphite Electrodes for Detection of Phenolic Compounds,” Analytica Chimica Acta, Vol. 387, No. 3, 1999, pp. 309-326. doi:10.1016/S0003-2670(99)00071-9

[24]   R. Tungel, T. Rinken, A. Rinken and T. Tenno, “Immobilisation and Kinetic Study of Tyrosinase for Biosensor Construction,” Analytical Letters, Vol. 32, No. 2, 1999, pp. 235-249. doi:10.1080/00032719908542818

[25]   D. G. Zhu, M. C. Petty, H. Ancelin and J. Yarwood, “On the Formation of Langmuir-Blodgett Films Containing Enzymes,” Thin Solid Films, Vol. 176, No. 1, 1989, pp. 151-156. doi:10.1016/0040-6090(89)90372-6

[26]   J. Anzai, S. Lee and T. Osa, “Enzyme-Immobilized Langmuir-Blodgett Membranes for Biosensor Application. Use of Highly Branched Polyethyleneimine as a Spacer for Immobilizing α-Chymotrypsin and Urease,” Die Makromolekulare Chemie Rapid Communications, Vol. 10, No. 4, 1989, pp. 167-170. doi:10.1002/marc.1989.030100404

[27]   I. A. Nagovitsyn and G. K. Chudinova, “An Immunosensor Based on Langmuir-Blodgett Films and Infrared Fluorescence Detection,” Biochemistry, Biophysics and Molecular Biology, Vol. 382, No. 2, 2002, pp. 267-269.

[28]   D. I. Cherny, A. Fourcade, F. Svinarchuk, P. E. Nielsen, C. Malvy and E. Delfin, “Analysis of Various SequenceSpecific Triplexes by Electron and Atomic Force Microscopies,” Biophysical Journal, Vol. 74, No. 2, 1998, pp. 1015-1023. doi:10.1016/S0006-3495(98)74026-3

[29]   F. Antolini, S. Paddeu and C. Nicolini, “Heat Stable Langmuir-Blodgett Film of Glutathione-S-Transferase,” Langmuir, Vol. 11, No. 7, 1995, pp. 2719-2725. doi:10.1021/la00007a062

[30]   S. Paddeu, A. Fanigliulo, M. Lanzi, T. Dubrovsky and C. Nicolini, “LB-Based PAB Immunosystem: Activity of an Immobilized Urease Monolayer,” Sensors & Actuators, B, Vol. 25, No. 1-3, 1995, pp. 876-882. doi:10.1016/0925-4005(95)85193-3

[31]   L. Caseli, A. C. Perinotto, T. Viitala, V. Zucolotto and O. N. Oliveira, “Immobilization of Alcohol Dehydrogenase in Phospholipid Langmuir-Blodgett Films to Detect Ethanol,” Langmuir, Vol. 25, No. 5, 2009, pp. 3057-3061. doi:10.1021/la8037445

[32]   J. Cabaj, K. Idzik, J. Soloducho, A. Chyla, J. Bryjak and J. Doskocz, “Well Ordered Thin Films as Practical Components of Biosensors,” Thin Solid Films, Vol. 516, No. 6, 2008, pp. 1171-1174. doi:10.1016/j.tsf.2007.06.082

[33]   T. Mai Anh, S. V. Dzyadevych, A. P. Soldatkin, N. Duc Chien, N. Jaffrezic-Renault and J.-M. Chovelon, “Development of Tyrosinase Biosensor Based on pH-Sensitive Field-Effect Transistors for Phenols Determination in Water Solutions,” Talanta, Vol. 56, No. 4, 2002, pp. 627634. doi:10.1016/S0039-9140(01)00611-7

[34]   L. C. Clark Jr. and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,” Annals of the New York Academy of Sciences, Vol. 102, 1962, pp. 29-45. doi:10.1111/j.1749-6632.1962.tb13623.x

[35]   A. M. Girelli, E. Mattei, A. Messina and D. Papaleo, “Immobilization of Mushroom Tyrosinase on Controlled Pore Glass: Effect of Chemical Modification,” Sensors and Actuators B, Vol. 125, No. 1, 2007, pp. 48-54. doi:10.1016/j.snb.2007.01.035

[36]   J. -L. Besombes, S. Cosnier and P. Labbe, “Improvement of Poly(Amphiphilic Pyrrole) Enzyme Electrodes via the Incorporation of Synthetic Laponite-Clay-Nanoparticles,” Talanta, Vol. 44, No. 12, 1997, pp. 2209-2215. doi:10.1016/S0039-9140(97)00039-8

[37]   J. N. Rodríguez-López, J. Tudela, R. Varón, F. García-Carmona and F. García-Cánovas, “Analysis of a Kinetic Model for Melanin Biosynthesis Pathway,” The Journal of Biological Chemistry, Vol. 267, No. 6, 1992, pp. 38013810.

[38]   H. Kotte, B. Gruendig and K.-D. Vorlop, “Methylphenazonium-Modified Enzyme Sensor Based on Polymer Thick Films for Subnanomolar Detection of Phenols,” Analytical Chemistry, Vol. 67, No. 1, 1995, pp. 65-70. doi:10.1021/ac00097a011

[39]   S. Imabayashi, Y. T. Kong and M. Watanabe, “Amperometric Biosensor for Polyphenol Based on Horseradish Peroxidase Immobilized on Gold Electrodes,” Electroanalysis, Vol. 13, No. 5, 2001, pp. 408-412.

[40]   J. Anzai, J. Hashimoto, T. Osa and T. Matsuo, “Penicillin Sensors Based on an Ion-Sensitive Field Effect Transistor Coated with Stearic Acid Langmuir-Blodgett Membrane,” Analytical Sciences, Vol. 4, No. 3, 1988, pp. 247-250. doi:10.2116/analsci.4.247

[41]   M. Sriyudthsak, H. Yamagishi and T. Moriizumi, “Enzyme-immobilized Langmuir-Blodgett Film for a Biosensor,” Thin Solid Films, Vol. 160, No. 1-2,1988, pp. 463470. doi:10.1016/0040-6090(88)90092-2

[42]   S. Korkut Ozoner, F. Yilmaz, A. Celik, B. Keskinler and E. Erhan, “A Novel Poly(Glycidly Methacrylate-co-3Thienylmethyl Methacrylate)-Polypyrrole-Carbon Nanotube-Horseradish Peroxidase Composite Film Electrode for the Detection of Phenolic Compounds,” Current Applied Physics, 2011, in press.

[43]   S. Korkut, B. Keskinler and E. Erhan, “An Amperometric Biosensor Based on Multiwalled Carbon Nanotube-Poly(Pyrrole)-Horseradish Peroxidase Nanobiocomposite Film for Determination of Phenol Derivatives,” Talanta, Vol. 76, No. 5, 2008, pp. 1147-1152. doi:10.1016/j.talanta.2008.05.016

[44]   H. Yin, S. Ai, W. Shi and L. Zhu, “A Novel Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized on Gold Nanoparticles-Silk Fibroin Modified Glassy Carbon Electrode and Direct Electrochemistry of Horseradish Peroxidase,” Sensors and Actuators B: Chemical, Vol. 137, No. 2, 2009, pp. 747-753.

[45]   R. Kumpangpet, B. Jongsomjit, C. Thanachayanont and S. Prichanont, “Solid Oxide Fuel Cell Technology,” Engineering Journal, Vol. 16, No. 3, 2012, pp. 45-52. doi:10.4186/ej.2012.16.3.45

[46]   X. Chen, C. Ruan, J. Kong and J. Deng, “Characterization of the Direct Electron Transfer and Bioelectrocatalysis of Horseradish Peroxidase in DNA Film at Pyrolytic Graphite Electrode,” Analytica Chimica Acta, Vol. 412, No. 1-2, 2000, pp. 89-98. doi:10.1016/S0003-2670(99)00877-6

[47]   B. Serra, B. Benito, L. Agui, A. J. Reviejo and J. M. Pingarron, “Graphite-Teflon-Peroxidase Composite Electrochemical Biosensors. A Tool for the Wide Detection of Phenolic Compounds. Electroanalysis, Vol. 13, No. 8-9, 2001, pp. 693-700. doi:10.1002/1521-4109(200105)13:8/9<693::AID-ELAN693>3.0.CO;2-3

[48]   W. Scheller, F. Schubert and J. Fedrowitz, “Frontiers in Biosensorics I. Fundamental Aspects,” Birkhauser, Basel, 1997.

[49]   G. Bidan, “Electro Conducting Conjugated Polymers: New Sensitive Matrices to Build up Chemical or Electrochemical Sensors,” Sensors and Actuators B: Chemical, Vol. 6, No. 1-3, 1992, pp. 45-56. doi:10.1016/0925-4005(92)80029-W

[50]   M. Trojanowicz, A. Lewenstam, T. Krawczynski vel Krawczyk, I. Lähdesmäki and W. Szczepek, “Flow Injection Amperometric Detection of Ammonia Using a Polypyrrole-Modified Electrode and Its Application in Urea and Creatinine Biosensors,” Electroanalysis, Vol. 8, No. 3, 1996, pp. 233-243. doi:10.1002/elan.1140080307

[51]   A. Guiseppi-Elie, C. Lei and R. H. Baughman, “Direct Electron Transfer of Glucose Oxidase on Carbon Nanotubes,” Nanotechnology, Vol. 13, No. 5, 2002, pp. 559-564. doi:10.1088/0957-4484/13/5/303

[52]   W. Schuhmann, “Conducting Polymers and Their Application in Amperometric Biosensors,” Microchimica Acta, Vol. 121, No. 1-4, 1995, pp. 1-29. doi:10.1007/BF01248237

[53]   P. N. Barlett and J. M. Cooper, “A Review of the Immobilization of Enzymes in Electropolymerized Films,” Journal of Electroanalytical Chemistry, Vol. 362, No. 1-2, 1993, pp. 1-12.

[54]   N. Gupta, S. Sharma, I. A. Mir and D. Kumar, “Advances in Sensors Based on Conducting Polymers,” Journal of Scientific & Industrial Research, Vol. 65, 2006, pp. 549557.

[55]   S. B. Adeloju and G. G. Wallace, “Conducting Polymers and the Bioanalytical Sciences: New Tools for Biomolecular Communication. A Review,” Analyst, Vol. 121, No. 6, 1996, pp. 699-703. doi:10.1039/an9962100699

[56]   W. J. Sung and Y. H. Bae, “A GL on Electropolymerized Conducting Polymer with Polyanion-Enzyme Conjugated Dopant.” Analytical Chemistry, Vol. 72, No. 9, 2000, pp. 2177-2181. doi:10.1021/ac9908041

[57]   P. R. Unwin and A. J. Bard, “Scanning Electrochemical Microscopy. 9. Theory and Application for Feedback Mode to the Measurement of the Following Chemical Reaction Rates in Electrode Process,” The Journal of Physical Chemistry, Vol. 95, No. 20, 1991, pp. 7814-7824. doi:10.1021/j100173a049

[58]   M. Situmorang, J. J. Gooding, D. B. Hibbert and D. Barnett, “Development of Potentiometric Biosensors Using Electrodeposited Polytyramine as the Enzyme Immobilization Matrix,” Electroanalysis, Vol. 13, No. 18, 2001, pp. 1469-1474. doi:10.1002/1521-4109(200112)13:18<1469::AID-ELAN1469>3.0.CO;2-U

[59]   A. Mulchandani and C.-L. Wang, “Bienzyme Sensors Based on Poly(Anilinomethylferrocene)-Modified Electrodes,” Electroanalysis, Vol. 8, No. 5, 1996, pp. 414-419. doi:10.1002/elan.1140080503

[60]   G. Vasapollo, R. Del Sole, L. Mergola, M. R. Lazzoi, A. Scardino, S. Scorrano and G. Mele, “Molecularly Imprinted Polymers: Present and Future Prospective,” International Journal of Molecular Sciences, Vol. 12, No. 9, 2011, pp. 5908-5945. doi:10.3390/ijms12095908

[61]   B. Adhikari and S. Majumdar, “Polymers in Sensor Applications,” Progress in Polymer Science, Vol. 29, No. 7, 2004, pp. 699-766. doi:10.1016/j.progpolymsci.2004.03.002

[62]   T. Ahuja, A. Mir, I. Kumar and D. Rajesh, “Biomolecular Immobilization on Conducting Polymers for Biosensing Applications,” Biomaterials, Vol. 28, No. 5, 2007, pp. 791-895. doi:10.1016/j.biomaterials.2006.09.046

[63]   M. K. Ram, M. Adami, S. Paddeu and C. Nicolini, “Nanoassembly of Glucose Oxidase on the in Situ Self-Assembled Electrochemical Characterizations,” Nanotechnology, Vol. 11, No. 2, 2000, pp. 112-119. doi:10.1088/0957-4484/11/2/312

[64]   J. Kan, X. Pan and C. Chen, “Polyaniline-Uricase Biosensor Prepared with Template Process,” Biosensors and Bioelectronics, Vol. 19, No. 12, 2004, pp. 1635-1640. doi:10.1016/j.bios.2003.12.032

[65]   M. Gerard, A. Chaubey and B. D. Malhotra, “Application of Conducting Polymers to Biosensors,” Biosensors and Bioelectronics, Vol. 17, No. 5, 2000, pp. 345-359. doi:10.1016/S0956-5663(01)00312-8

[66]   K. F. Fernandes, C. S. Lima, F. M. Lopes and C. H. Collins, “Hydrogen Peroxide Detection System Consisting of Chemically Immobilised Peroxidase and Spectrometer,” Process Biochemistry, Vol. 40, No. 11, 2005, pp. 3441-3445. doi:10.1016/j.procbio.2005.04.003

[67]   Rajesh, W. Takashima and K. Kaneto, “Amperometric Phenol Biosensor Based on Covalent Immobilization of Tyrosinase onto an Electrochemically Prepared Novel Copolymer Poly (N-3-Aminopropyl Pyrrole-Co-Pyrrole) Film,” Sensors and Actuators B: Chemical, Vol. 102, No. 2, 2004, pp. 271-277. doi:10.1016/j.snb.2004.04.028

[68]   B. Palys, A. Bokun and J. Rogalski, “Poly-o-Fenylenediamine as Redox Mediator for Laccase,” Electrochimica Acta, Vol. 52, No. 24, 2007, pp. 7075-7082. doi:10.1016/j.electacta.2007.05.029

[69]   A. Rahman, H.-B. Noh and Y.-B. Shim, “Direct Electrochemistry of Laccase Immobilized on Au Nanoparticles Encapsulated-Dendrimer Bonded Conducting Polymer: Application for a Catechin Sensor,” Analytical Chemistry, Vol. 80, No. 21, 2008, pp. 8020-8027. doi:10.1021/ac801033s

[70]   C. Verdine, S. Fabiano and C. Tran-Minh, “Amperometric Tyrosinase Based Biosensor Using an Electrogenerated Polythiophene Film as an Entrapment Support,” Talanta, Vol. 59, No. 3, 2003, pp. 535-544. doi:10.1016/S0039-9140(02)00540-4

[71]   E. Moczko, G. Istamboulie, C. Calas-Blanchard, R. Rouillon and T. Noguer, “Biosensor Employing ScreenPrinted PEDOT:PSS for Sensitive Detection of Phenolic Compounds in Water,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 50, No. 11, 2012, pp. 22862292. doi:10.1002/pola.26009

[72]   J.-H. Yang, J.-C. Lee and S.-H. Choi, “Tyrosinase-Immobilized Biosensor Based on the Functionalized Hydroxyl Group-MWNT and Detection of Phenolic Compounds in Red Wines,” Journal of Sensors, Vol. 2009, No. 2009, 2009, pp. 1-9. doi:10.1155/2009/916515

[73]   P. De Taxis du Poet, S. Miyamoto, et al., “Direct Electron Transfer with Glucose Oxidase Immobilized in an Electropolymerized Poly-N-Methylpyrrole Film on a Gold Microelectrode,” Analytica Chimica Acta, Vol. 235, 1990, pp. 255-264. doi:10.1016/S0003-2670(00)82082-6

[74]   Y. Iwakura, M. Asano and Y. Kavade, “Male Sterility of Transgenic Mice Carrying Exogenous Mouse InterferonBeta Gene under the Control of the Metallothionein Enhancer-Promoter,” The EMBO Journal, Vol. 7, No. 12, 1988, pp. 3757-3762.

[75]   Y. Li, W. Zhang, J. Chang, J. Chen and G. Li, “‘Click’ on Conducting Polymer Coated Electrodes: A Versatile Platform for the Modification of Electrode Surface,” Macromolecular Chemistry Physics, Vol. 209, No. 3, 2008, pp. 322-329. doi:10.1002/macp.200700436

[76]   Y. Nakabayashi and H. Yoshikawa, “Amperometric Biosensors for Sensing of Hydrogen Peroxide Based on Electron Transfer between Horseradish Peroxide and Ferrocene as a Mediator,” Analytical Sciences, Vol. 16, No. 6, 2000, pp. 609-613. doi:10.2116/analsci.16.609

[77]   S. Thanachasai, S. Rokutanzono, S. Yoshida and T. Watanabe, “Novel Hydrogen Peroxide Sensors Based on Peroxidase-Carrying Poly{Pyrrole-Co-[4-(3-Pyrrolyl)Butanesulfonate]} Copolymer Films,” Analytical Sciences, Vol. 18, No. 7, 2002, pp. 773-777. doi:10.2116/analsci.18.773

[78]   M. Yasuzava, T. Nieda, T. Hirano and A. Kunugi, “Properties of Glucose Sensors Based on the Immobilization of Glucose Oxidase in N-Substituted Polypyrrole Film,” Sensors and Actuators B: Chemical, Vol. 66, No. 1-3, 2000, pp. 77-79. doi:10.1016/S0925-4005(99)00453-0

[79]   M. Gerard, A. Chaubey and B. D. Malhotra, “Application of Conducting Polymers to Biosensors,” Biosensors and Bioelectronics, Vol. 17, No. 5, 2002, pp. 345-359. doi:10.1016/S0956-5663(01)00312-8

[80]   S. Terrettaz, W. -P. Ulrich, H. Vogel, Q. Hong, L. G. Dover and J. H. Lakey, “ Stable Self-Assembly of a Protein Engineering Scaffold on Gold Surfaces,” Protein Sciences, Vol. 11, No. 8, 2002, pp. 1917-1925. doi:10.1110/ps.0206102

[81]   X. F. Ang, Z. Chen, C. C. Wong and J. Wei, “Effect of Chain Length on Low Temperature Gold-Gold Bonding by Self-Assembled Monolayers,” Applied Physics Letters, Vol. 92, 2008, Article ID: 13913. doi:10.1063/1.2906905

[82]   M. W. Shinwari, M. J. Deen, E. B. Starikov and G. Cuniberti, “Electrical Conductance in Biological Molecules,” Advanced Functional Materials, Vol. 20, No. 12, 2010, pp. 1865-1883. doi:10.1002/adfm.200902066

[83]   A. Riccio, M. Lanzi, C. Antolini, C. De Nitti, C. Tavani and C. Nicolini, “Ordered Monolayer of Cytochrome c via Chemical Derivatization of Its Outer Arginine,” Langmuir, Vol. 12, No. 6, 1996, pp. 1545-1549. doi:10.1021/la950420f

[84]   V. Erokhin, P. Facci and C. Nicolini, “Two-Dimensional Order and Protein Thermal Stability: High Temperature Preservation of Structure and Function,” Biosensors and Bioelectronics, Vol. 10, No. 1-2, 1995, pp. 25-34. doi:10.1016/0956-5663(95)96792-W

[85]   K. S. Birdi, “Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces,” Kluwer Academic Press, Dordrecht, 1999.

[86]   A. P. Girart-Ergot, S. Godoy and L. J. Blum, “Enzyme Association with Lipidic Langmuir-Blodgett Films: Interests and Applications in Nanobioscience,” Advances in Colloid and Interface Science, Vol. 116, No. 1-3, 2005, pp. 205-225. doi:10.1016/j.cis.2005.04.006

[87]   P. H. B. Aoki, P. Alessio, M. L. Rodriguez-Mendez, J. A. De Saja Saez and C. J. L. Constantino, “Taking Advantage of Electrostatic Interactions to Grow,” Langmuir, Vol. 25, No. 22, 2009, pp. 13062-13070. doi:10.1021/la901923v

[88]   J. J. Davis, D. A. Morgan, C. L. Wrathmell, D. N. Axford, J. Zhao and N. Wang, “Molecular Bioelectronics,” Journal of Materials Chemistry, Vol. 15, No. 22, 2005, pp. 2160-2174. doi:10.1039/b417712f

[89]   J. W. Zhao, J. J. Davis, M. S. P. Sansom and A. Hung, “Exploring the Electronic and Mechanical Properties of Protein Using Conducting Atomic Force Microscopy,” Journal of the American Chemical Society, Vol. 126, No. 17, 2004, pp. 5601-5609. doi:10.1021/ja039392a

[90]   J. Zhao and J. J. Davis, “Force Dependent Metalloprotein Conductance by Conducting Atomic Force Microscopy,” Nanotechnology, Vol. 14, No. 9, 2003, pp. 1023-1028. doi:10.1088/0957-4484/14/9/317

 
 
Top