OJGen  Vol.3 No.2 , June 2013
Isolation and characterization of polymorphic microsatellite loci for the valuable medicinal plant Astragalus mongholicus
ABSTRACT

Astragalus mongholicus (Fabaceae) is a perennial herb and a widely used medicinal plant in traditional Chinese medicine (TCM) known as Radix Astragali (Huangqi). It was reported to have hepatoprotective, cardioprotective, antidiabetic, antiaging, sedative and immunopotentiating effects, and could also be used as an adjuvant medicine during cancer therapy. Until now, there is only a little research on its population genetics and no report on development of microsatellite loci for this plant. In this study, a microsatellite-enriched genomic DNA library of A. mongholicus was developed and screened to identify marker loci. Ten polymorphic loci were isolated and analyzed by screening 30 individuals. The number of alleles per locus ranged from 4 to 19, with an average of 12.3 alleles per locus. The observed heterozygosity (HO) and the expected heterozygosity (HE) ranged from 0.367 to 1.000 and from 0.395 to 0.912, respectively. The polymorphism information content (PIC) varied from 0.361 to 0.888, with an average of 0.762. This is the first report on characterization of microsatellite loci for A. mongholicus, and these markers will be useful for population genetics and molecular ecology studies of this plant.


Cite this paper
Wang, A. , Wujisguleng, W. , Liu, Y. , Liu, Y. and Long, C. (2013) Isolation and characterization of polymorphic microsatellite loci for the valuable medicinal plant Astragalus mongholicus. Open Journal of Genetics, 3, 89-92. doi: 10.4236/ojgen.2013.32011.
References
[1]   [1] Xu, L.R. and Podlech, D. (2010) Astragalus. In: Wu, Z.Y. and Raven, P.H., Eds., Flora of China, Science, Beijing, Missouri Botanical Garden Press, St Louis, 328-453.

[2]   The State Pharmacopoeia Commission of PR China. (2010) Pharmacopoeia of People’s Republic of China. Chemical Industry Press, Beijing.

[3]   Sinclair, S. (1998) Chinese herbs: A clinical review of Astragalus, Ligusticum, and Schizandra. Alternative Medicine Review, 3, 338-344.

[4]   Xiao, W.L., Motley, T.J., Unachukwu, U.J., San Lau, C.B., Jiang, B., Hong, F., Leung, P.C., Wang, Q.F., Livingston, P.O., Cassileth, B.R. and Kennelly, E.J. (2011) Chemical and genetic assessment of variability in commercial Radix astragali (Astragalus spp.) by ion trap LCMS and nuclear ribosomal DNA barcoding sequence analyses. Journal of Agricultural and Food Chemistry, 59, 1548-1556. doi:10.1021/jf1028174

[5]   Chu, C., Qi, L.W., Liu, E.H., Li, B., Gao, W. and Li, P. (2010) Radix Astragali (Astragalus): Latest advancements and trends in chemistry, analysis, pharmacology and pharmacokinetics. Current Organic Chemistry, 14, 1792-1807. doi:10.2174/138527210792927663

[6]   Dong, T.T.X., Ma, X.Q., Clarke, C., Song, Z.H., Ji, Z.N., Lo, C.K. and Tsim, K.W.K. (2003) Phylogeny of Astragalus in China: Molecular evidence from the DNA sequences of 5S rRNA spacer, ITS, and 18S rRNA. Journal of Agricultural and Food Chemistry, 51, 6709-6714. doi:10.1021/jf034278x

[7]   Yan, L., Wan, T., Zhang, Z., Wang, X. and Sun, W. (2001) Analysis on botanical characters of Astragalus membranacens Bunge. and A. membranacens var. mongolicus (Bunge) Hsiao. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 22, 71-77.

[8]   Wu, S., Wang, L., Sun, L., Bu, Y. and Wu, J. (2006) Karyotype analysis of Astragalus membranaceus. Hubei Agricultural Sciences, 45, 631-633.

[9]   Duan, L.X., Chen, T.L., Li, M., Chen, M., Zhou, Y.Q., Cui, G.H., Zhao, A.H., Jia, W., Huang, L.Q. and Qi, X.Q. (2012) Use of the metabolomics approach to characterize Chinese medicinal material Huangqi. Molecular Plant, 5, 376-386. doi:10.1093/mp/ssr093

[10]   Li, Y.C., Korol, A.B., Fahima, T., Beiles, A. and Nevo, E. (2002) Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 11, 2453-2465. doi:10.1046/j.1365-294X.2002.01643.x

[11]   Sharma, P.C., Grover, A. and Kahl, G. (2007) Mining microsatellites in eukaryotic genomes. Trends in Biotechnology, 25, 490-498. doi:10.1016/j.tibtech.2007.07.013

[12]   Wang, H., Chen, N.F., Zheng, J.Y., Wang, W.C., Pei, Y.Y. and Zhu, G.P. (2012) Isolation and characterization of eleven polymorphic microsatellite loci for the valuable medicinal plant Dendrobium huoshanense and crossspecies amplification. International Journal of Molecular Sciences, 13, 16779-16784. doi:10.3390/ijms131216779

[13]   Yu, K., Park, S., Poysa, V. and Gepts, P. (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Journal of Heredity, 91, 429-434. doi:10.1093/jhered/91.6.429

[14]   Ellegren, H. (2004) Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics, 5, 435-445. doi:10.1038/nrg1348

[15]   Bloor, P., Barker, F., Watts, P., Noyes, H. and Kemp, S. (2001) Microsatellite libraries by enrichment. http://www.genomics.liv.ac.uk/animal/Protocol1.html

[16]   Schuelke, M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234. doi:10.1038/72708

[17]   Raymond, M. and Rousset, F. (1995) GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.

[18]   Rousset, F. (2008) Genepop’007: A complete reimplementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8, 103-106. doi:10.1111/j.1471-8286.2007.01931.x

[19]   Kalinowski, S.T., Taper, M.L. and Marshall, T.C. (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099-1106. doi:10.1111/j.1365-294X.2007.03089.x

[20]   Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. and Shipley, P. (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538. doi:10.1111/j.1471-8286.2004.00684.x

 
 
Top