ABC  Vol.3 No.3 A , June 2013
Calyculin A induces prematurely condensed chromosomes without histone H1 phosphorylation in mammalian G1-phase cells

It is shown here that one can induce prematurely condensed chromosomes (PCCs) in G1-phase human (HeLa) and mouse (FT210) cells by treating them with the protein phosphatase inhibitor calyculin A. However, histone H1 is not phosphorylated in these G1-PCCs. It has previously been proposed that histone H1 phosphorylation is responsible for mitotic chromosome condensation, but our results suggest that this is not the case. They indicate instead that phosphorylation of histone H1 is not required for chromosome condensation. It is known that the Cdk1 protein kinase, which triggers mitosis and also phosphorylates histone H1, cannot be activated in G1-phase because mitotic cyclins are not present. Since calyculin A induces PCCs in G1-phase in the absence of active Cdk1, our results suggest that inactivation of protein phosphatases may be just as important for the onset of chromosome condensation and other mitotic events as the activation of protein kinases.

Cite this paper
Paulson, J. and Mause, E. (2013) Calyculin A induces prematurely condensed chromosomes without histone H1 phosphorylation in mammalian G1-phase cells. Advances in Biological Chemistry, 3, 36-43. doi: 10.4236/abc.2013.33A005.
[1]   Norbury, C. and Nurse, P. (1992) Animal cell cycles and their control. Annual Review of Biochemistry, 61, 441470. doi:10.1146/

[2]   Ward, G.E. and Kirschner, M.W. (1990) Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell, 61, 561-577. doi:10.1016/0092-8674(90)90469-U

[3]   Heald, R. and McKeon, F. (1990) Mutations of phosphorylation sites in lamin A that prevent nuclear lamin disassembly in mitosis. Cell, 61, 579-589. doi:10.1016/0092-8674(90)90470-Y

[4]   Peter, M., Heitlinger, E., Häner, M., Aebi, U. and Nigg E.A. (1991) Disassembly of in vitro formed lamin head-to-tail polymers by CDC2 kinase. EMBO Journal, 10, 1535-1544.

[5]   Gottesfeld, J.M. and Forbes, D.J. (1997) Mitotic repression of the transcriptional machinery. Trends in Biochemical Sciences, 22, 197-202. doi:10.1016/S0968-0004(97)01045-1

[6]   Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389, 2251-260.

[7]   Kornberg, R.D. and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell, 98, 285-294. doi:10.1016/S0092-8674(00)81958-3

[8]   Thoma, F., Koller, T. and Klug, A. (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. Journal of Cell Biology, 83, 403-427. doi:10.1083/jcb.83.2.403

[9]   Langmore, J.P. and Paulson, J.R. (1983) Low angle x-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. Journal of Cell Biology, 96, 1120-1131. doi:10.1083/jcb.96.4.1120

[10]   Robinson, P.J., An, W., Routh, A., et al. (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. Journal of Molecular Biology, 381, 816-825. doi:10.1016/j.jmb.2008.04.050

[11]   Lake, R.S., Goidl, J.A. and Salzman, N.P. (1972) F1-histone modification at metaphase in Chinese hamster cells. Experimental Cell Research, 73, 113-121. doi:10.1016/0014-4827(72)90108-5

[12]   Swank, R.A., Th’ng, J.P.H., Guo, X.-W., Valdez, J., Bradbury, E.M. and Gurley, L.R. (1997) Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites. Biochemistry, 36, 13761-13768. doi:10.1021/bi9714363

[13]   Happel, N., Stoldt, S., Schmidt, B. and Doenecke, D. (2009) M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3. Journal of Molecular Biology, 386, 339-350. doi:10.1016/j.jmb.2008.12.047

[14]   Hsu, J.-Y., Sun, Z.-W., Li, X., et al. (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell, 102, 279-291. doi:10.1016/S0092-8674(00)00034-9

[15]   Bradbury, E.M., Inglis, R.J., Matthews, H.R. and Sarner, N. (1973) Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. European Journal of Biochemistry, 33, 131-139. doi:10.1111/j.1432-1033.1973.tb02664.x

[16]   Bradbury, E.M., Inglis, R.J. and Matthews, H.R. (1974) Control of cell division by very lysine rich histone (F1) phosphorylation. Nature, 241, 257-261. doi:10.1038/247257a0

[17]   Matsumoto, Y., Yasuda, H., Mita, S., Marunouchi, T. and Yamada, M. (1980) Evidence for involvement of H1 histone phosphorylation in chromosome condensation. Nature, 284, 181-183. doi:10.1038/284181a0

[18]   Johnson, R.T. and Rao, P.N. (1970) Mammalian cell fusion: Induction of premature chromosome condensation in interphase nuclei. Nature, 226, 717-722. doi:10.1038/226717a0

[19]   Paulson, J.R., Patzlaff, J.S. and Vallis, A.J. (1996) Evidence that the endogenous histone H1 phosphatase in HeLa mitotic chromosomes is protein phosphatase 1, not protein phosphatase 2A. Journal of Cell Science, 109, 1437-1447.

[20]   Gotoh, E., Asakawa, Y. and Kosaka, H. (1995) Inhibition of protein serine/threonine phosphatases directly induces premature chromosome condensation in mammalian somatic cells. Biomedical Research, 16, 63-68.

[21]   Alsbeih, G. and Raaphorst, G.P. (1999) Differential induction of premature chromosome condensation by calyculin A in human fibroblast and tumor cell lines. Anti-cancer Research, 19, 903-908.

[22]   Suzuki, M., Piao, C.Q., Zhao, Y.L. and Hei, T.K. (2001) Karyotype analysis of tumorigenic human bronchial epithelial cells transformed by chrysolite asbestos using chemically induced premature chromosome condensation technique. International Journal of Molecular Medicine, 8, 43-47.

[23]   Bezrookove, V., Smits, R., Moeslein, G., et al. (2003) Premature chromosome condensation revisited: A novel chemical approach permits efficient cytogenetic analysis of cancers. Genes Chromosomes and Cancer, 38, 177186. doi:10.1002/gcc.10268

[24]   Gotoh, E. (2007) Visualizing the dynamics of chromosome structure formation coupled with DNA replication. Chromosoma, 116, 453-462. doi:10.1007/s00412-007-0109-5

[25]   Mineo, C., Murakami, Y., Ishimi, Y., Hanaoka, F. and Yamada, M. (1986) Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions. Experimental Cell Research, 167, 53-62. doi:10.1016/0014-4827(86)90203-X

[26]   Paulson, J.R. (2007) Inactivation of Cdk1/cyclin B in metaphase-arrested mouse FT210 cells induces exit from mitosis without chromosome segregation or cytokinesis and allows passage through another cell cycle. Chromosoma, 116, 215-225. doi:10.1007/s00412-006-0093-1

[27]   Patzlaff, J.S., Terrenoire, E., Turner, B.M., Earnshaw, W.C. and Paulson, J.R. (2010) Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells. Experimental Cell Research, 316, 2123-2135. doi:10.1016/j.yexcr.2010.05.003

[28]   Xeros, N. (1962) Deoxyriboside control and synchronization of mitosis. Nature, 194, 682-683. doi:10.1038/194682a0

[29]   Paulson, J.R., Ciesielski, W.A., Schram, B.R. and Mesner, P.W. (1994) Okadaic acid induces dephosphorylation of histone H1 in metaphase-arrested HeLa cells. Journal of Cell Science, 107, 267-273.

[30]   Paulson, J.R. (1982) Isolation of chromosome clusters from metaphase-arrested HeLa cells. Chromosoma, 85, 571-581. doi:10.1007/BF00327351

[31]   Paulson, J.R. (1980) Sulfhydryl reagents prevent dephosphorylation and proteolysis of histones in isolated HeLa metaphase chromosomes. European Journal of Biochemistry, 111, 189-197. doi:10.1111/j.1432-1033.1980.tb06092.x

[32]   Panyim, S. and Chalkley, R. (1969) High resolution acrylamide gel electrophoresis of histones. Archives of Biochemistry and Biophysics, 130, 337-346. doi:10.1016/0003-9861(69)90042-3

[33]   Paulson, J.R. and Higley, L.L. (1999) Acidurea polyacrylamide slab gel electrophoresis of proteins: Preventing distortion of gel wells during preelectrophoresis. Analytical Biochemistry, 268, 157-159. doi:10.1006/abio.1998.3026

[34]   Musio, A., Mariani, T., Frediani, C., Ascoli, C. and Sbrana, I. (1997) Atomic force microscope imaging of chromosome structure during G-banding treatments. Genome, 40, 127-131. doi:10.1139/g97-018

[35]   Th’ng, J.P.H., Wright, P.S., Hamaguchi, J., et al. (1990) The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive cdc2 gene product. Cell, 63, 313324. doi:10.1016/0092-8674(90)90164-A

[36]   Gurley, L.R., D’Anna, J.A., Barham, S.S., Deaven, L.L. and Tobey, R.A. (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. European Journal of Biochemistry, 84, 1-15. doi:10.1111/j.1432-1033.1978.tb12135.x

[37]   Ditchfield, C., Keen, N. and Taylor, S.S. (2005) The Ipl1/ Aurora kinase family: Methods of inhibition and functional analysis in mammalian cells. Methods in Molecular Biology, 296, 371-381.

[38]   Ishihara, H., Martin, B.L., Brautigan, D.L., et al. (1989) Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity. Biochemical and Biophysical Research Communications, 159, 871-877. doi:10.1016/0006-291X(89)92189-X

[39]   Th’ng, J.P.H., Guo, X.W., Swank, R.A., Crissman, H.A. and Bradbury, E.M. (1994) Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. Journal of Biological Chemistry, 269, 95689573.

[40]   Banerjee, T. and Chakravarti, D. (2011) A peek into the complex realm of histone phosphorylation. Molecular and Cellular Biology, 31, 4858-4873. doi:10.1128/MCB.05631-11

[41]   Hendzel, M.J., Wei, Y., Mancini, M.A., et al. (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 106, 348360. doi:10.1007/s004120050256

[42]   Wei, Y., Mizzen, C.A., Cook, R.G., Gorovsky, M.A. and Allis, C.D. (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proceedings of the National Academy of Sciences of the United States of America, 95, 7480-7484. doi:10.1073/pnas.95.13.7480

[43]   Wei, Y., Yu, L., Bowen, J., Gorovsky, M.A. and Allis, C.D. (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell, 97, 99-109. doi:10.1016/S0092-8674(00)80718-7

[44]   Pérez-Cadahía, B., Drobic, B. and Davie, J.R. (2009) H3 phosphorylation: Dual role in mitosis and interphase. Biochemistry and Cell Biology, 87, 695-709. doi:10.1139/O09-053

[45]   Horn, P.J., Carruthers, L.M., Logie, C., et al. (2002) Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nature Structural Biology, 9, 263-267. doi:10.1038/nsb776

[46]   Prigent, C. and Dimitrov, S. (2003) Phosphorylation of serine 10 in histone H3, what for? Journal of Cell Science, 116, 3677-3685. doi:10.1242/jcs.00735