NR  Vol.4 No.3 , July 2013
Modeling Multiple Quantum Well and Superlattice Solar Cells

The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to ultra-high efficiency solar cells include devices such as multiple quantum wells (QW) and superlattices (SL) systems in the intrinsic region of a p-i-n cell of wider band-gap energy (barrier or host) semiconductor. These configurations are intended to extend the absorption band beyond the single gap host cell semiconductor. A theoretical model has been developed to study the performance of the strain-balanced GaAsP/InGaAs/GaAs MQWSC, and GaAs/GaInNAs MQWSC or SLSC. Our results show that conversion efficiencies can be reached which have never been obtained before for a single-junction solar cell.

Cite this paper: C. Cabrera, J. Rimada, M. Courel, L. Hernandez, J. Connolly, A. Enciso and D. Contreras-Solorio, "Modeling Multiple Quantum Well and Superlattice Solar Cells," Natural Resources, Vol. 4 No. 3, 2013, pp. 235-245. doi: 10.4236/nr.2013.43030.

[1]   K. W. J. Barnham and C. Duggan, “A New Approach to High-Efficiency Multi-Bandgap Solar Cells,” Journal of Applied Physics, Vol. 67, No. 7, 1990, pp. 3490-3493. doi:10.1063/1.345339

[2]   J. Nelson, M. Paxman, K. W. J. Barnham, J. S. Roberts and C. Button, “Steady-State Carrier Escape from Single Quantum Wells,” IEEE Journal of Quantum Electronics, Vol. 29, No. 6, 1993, pp. 1460-1465. doi:10.1109/3.234396

[3]   M. Paxman, J. Nelson, K. W. J. Barnham, B. Braun, J. P. Connolly, C. Button, J. S. Roberts and C. T. Foxon, “Modeling the Spectral Response of the Quantum Well Solar Cell,” Journal of Applied Physics, Vol. 74, No. 1, 1993, pp. 614-621. doi:10.1063/1.355275

[4]   M. Courel, J. C. Rimada and L. Hernández, “AlGaAs/ GaAs Superlattice Solar Cells,” Progress in Photovoltaics: Research and Applications, Vol. 21, No. 3, 2012, pp. 276-282. doi:10.1002/pip.1178

[5]   P. R. Griffin, J. Barnes, K. W. J. Barnham, G. Haarpaintner, M. Mazzer, C. Zanotti-Fregonara, E. Grunbaum, C. Olson, C. Rohr, J. P. R. David, J. S. Roberts, R. Gray and M. A. Pate, “Effect of Strain Relaxation on Forward Bias Dark Currents in GaAs/InGaAs Multiquantum Well p-i-n Diodes,” Journal of Applied Physics, Vol. 80, No. 10, 1996, pp. 5815-5820. doi:10.1063/1.363574

[6]   N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill and M. Mazzer, “StrainBalanced GaAsP/InGaAs Quantum Well Solar Cells,” Applied Physics Letters, Vol. 75, No. 26, 1999, pp. 495-497. doi:10.1063/1.125580

[7]   D. C. Johnson, I. Ballard, K. W. J. Barnham, M. Mazzer, T. N. D. Tibbits, J. Roberts, G. Hill and C. Calder, “Optimisation of Photon Recycling Effects in Strain-Balanced Quantum Well Solar Cells,” Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 7-12 May 2006, pp. 26-31.

[8]   M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki and Y. Yazawa, “GaInNAs: A Novel Material for LongWavelength-Range Laser Diodes with Excellent HighTemperature Performance,” Japanese Journal of Applied Physics, Vol. 35, Pt. 1, 1996, pp. 1273-1275. doi:10.1143/JJAP.35.1273

[9]   D. J. Friedman and S. R. Kurtz, “Breakeven Criteria for the GaInNAs Junction in GaInP/GaAs/GaInNAs/Ge FourJunction Solar Cells,” Progress in Photovoltaics, Vol. 10, No. 5, 2002, pp. 331-344. doi:10.1002/pip.430

[10]   A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin and G. Radhakrishnan, “III-V Dilute Nitride-Based Multi-Quantum Well Solar Cell,” Journal of Crystal Growth, Vol. 301-302, 2007, pp. 993-996. doi:10.1016/j.jcrysgro.2006.11.256

[11]   E. Reyes-Gómez, L. E. Oliveira and M. de Dios-Leyva, “Quasi-Bond States and Intra-Band Transition Energies in GaAs-(Ga,Al)As Variably Spaced Semiconductor Superlattices,” Physica B, Vol. 358, No 1-4, 2005, pp. 269-278. doi:10.1016/j.physb.2005.01.462

[12]   J. C. Rimada, L. Hernández, J. P. Connolly and K. W. J. Barnham, “Conversion Efficiency Enhancement of AlGaAs Quantum Well Solar Cells,” Microelectronics Journal, Vol. 38, No. 4-5, 2007, pp. 513-518. doi:10.1016/j.mejo.2007.03.007

[13]   K. W. J. Barnham and D. Vvedensky, “Low-Dimensional Semiconductor Structures,” Cambridge University Press, Cambridge, 2001, pp. 280-286. doi:10.1017/CBO9780511624247

[14]   S.-H. Yen, M.-L. Chen and Y.-K. Kuo, “Gain and Threshold Properties of InGaAsN/GaAsN Material System for 1. 3-μm Semiconductor Lasers,” Optics & Laser Technology, Vol. 39, No. 7, 2007, pp. 1432-1436. doi:10.1016/j.optlastec.2006.10.003

[15]   M. Courel, J. C. Rimada and L. Hernández, “GaAsGaInNAs Quantum Well and Superlattice Solar Cell,” Applied Physics Letters, Vol. 100, No. 7, 2012, pp. 073508-11. doi:10.1063/1.3687195