JMP  Vol.4 No.6 A , June 2013
A Reverse Approach to Superconductivity
ABSTRACT

In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this work, we give a concise introduction to our recent work in this aspect. By postulating a superconducting state (SCS) to be a generalized coherent state (GCS) constructed by pure group theory, we show that some important properties such as the Cooper pairs of the SCS naturally appear in this new framework without resorting to the microscopic origin. This latter characteristic renders this theory a more universal feature in comparison with other theories developed by the operator approach. The studies on the residue of the pair-wise constraint due to the collapse of the GCS lead to a “flat/steep” band model for searching new superconductors.


Cite this paper
S. Deng, C. Felser and J. Köhler, "A Reverse Approach to Superconductivity," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 10-13. doi: 10.4236/jmp.2013.46A003.
References
[1]   G. Rickayzen, “Theory of Superconductivity,” In: R. D. Parks, Eds. Superconductivity, Marcel Dekker, Inc., New York, 1969, pp. 52-112.

[2]   P. W. Anderson, “A Career in Theoretical Physics,” World Scientific, Singapore City, 1994, pp. 143-163. doi:10.1142/9789812385123_0011

[3]   R. J. Glauber, Physical Review Letters, Vol. 10, 1963, pp. 84-86. doi:10.1103/PhysRevLett.10.84

[4]   F. W. Cummings and J. R. Johnston, Physical Review, Vol. 151, 1966, p. 105. doi:10.1103/PhysRev.151.105

[5]   J. S. Langer, Physical Review, Vol. 167, 1966, p. 183. doi:10.1103/PhysRev.167.183

[6]   A. M. Perelomov, Communications in Mathematical Physics, Vol. 26, 1972, p. 222. doi:10.1007/BF01645091

[7]   A. M. Perelomov, “Generalized Coherent States and Their Applications,” Springer-Verlag, Heidelberg, 1986. doi:10.1007/978-3-642-61629-7

[8]   L. K. Hua, “Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Translations of Mathematical Monographs, Vol. 6,” American Mathematical Society, Providence, 1963.

[9]   S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces,” Academic, New York, 1978.

[10]   S. Deng, J. Kohler and A. Simon, Zeitschrift für Kristallographie, Vol. 225, 2010, p. 495. doi:10.1524/zkri.2010.1325

[11]   J. Bardeen, L. N. Cooper and J. R. Schrieffer, Physical Review, Vol. 106, 1957, p. 162. doi:10.1103/PhysRev.106.162

[12]   M. Randeria, J. M. Duan and L. Y. Shieh, Physical Review B, Vol. 41, 1990, p. 327. doi:10.1103/PhysRevB.41.327

[13]   S. Deng, S. Simon and A. J. Kohler, Structure and Bonding, Vol. 114, 2005, p. 103.

[14]   S. Deng, J. Kohler and A. Simon, Physical Review B, Vol. 80, 2009, Article ID: 214508. doi:10.1103/PhysRevB.80.214508

[15]   S. Deng, A. Simon and J. Kohler, “Lone Pairs, Bipolarons and Superconductivity in Tellurium,” In: A. Bussmann-Holder and H. Keller, Eds., Superconductors and Related Transition Metal Oxides, Springer-Verlag, Berlin, 2007, pp. 201-211. doi:10.1007/978-3-540-71023-3_16

[16]   S. Deng, A. Simon and J. Kohler, International Journal of Modern Physics B, Vol. 21, 2007, p. 3082. doi:10.1142/S0217979207043956

[17]   S. Deng, A. Simon and J. Kohler, International Journal of Modern Physics B, Vol. 19, 2005, p. 29. doi:10.1142/S0217979205027895

[18]   H. Suhl, B. T. Matthias and L. R. Walker, Physical Review Letters, Vol. 3, 1959, p. 552. doi:10.1103/PhysRevLett.3.552

[19]   S. Deng, J. Kohler and A. Simon, “A Numeric Study of the Flat/Steep Band Scenario,” International Conference on Dynamic Inhomogeneities in Complex Oxides, Bled, 14-20 June 2003.

 
 
Top