ABC  Vol.3 No.3 A , June 2013
Protein kinase CK2 in the ER stress response
Abstract: The endoplasmic reticulum is the central organelle within a eukaryotic cell where newly synthesized proteins are processed and properly folded. An excess of unfolded or mis-folded proteins induces ER stress signalling pathways. Usually this means a pro-survival strategy for the cell, whereas under extended stress conditions the ER stress signalling pathways have a pro-apoptotic function. CK2 plays a key role in the regulation of the pro-survival as well as the proapoptotic ER stress signalling by directly modulating the activities of members of the ER stress signalling pathways by phosphorylation, regulating the expression of the key factors of the signalling pathways or binding to regulator proteins. The present review will summarize the state of the art in this new emerging field.
Cite this paper: Götz, C. and Montenarh, M. (2013) Protein kinase CK2 in the ER stress response. Advances in Biological Chemistry, 3, 1-5. doi: 10.4236/abc.2013.33A001.

[1]   Cao, S.S. and Kaufman, R.J. (2012) Unfolded protein response. Current Biology, 22, R622-R626. doi:10.1016/j.cub.2012.07.004

[2]   Walter, P. and Ron, D. (2011) The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081-1086. doi:10.1126/science.1209038

[3]   Dominguez, I., Degano, I.R., Chea, K., et al. (2011) CK2alpha is essential for embryonic morphogenesis. Molecular and Cellular Biochemistry, 356, 209-216. doi:10.1007/s11010-011-0961-8

[4]   Lou, D.Y., Dominguez, I., Toselli, P., et al. (2007) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Molecular and Cellular Biochemistry, 28, 131-139.

[5]   Buchou, T., Vernet, M., Blond, O., et al. (2003) Disruption of the regulatory b subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Molecular and Cellular Biochemistry, 23, 908-915. doi:10.1128/MCB.23.3.908-915.2003

[6]   Lüscher, B. and Litchfield, D.W. (1994) Biosynthesis of casein kinase II in lymphoid cell lines. European Journal of Biochemistry, 220, 521-526. doi:10.1111/j.1432-1033.1994.tb18651.x

[7]   Guerra, B., Siemer, S., Boldyreff, B., et al. (1999) Protein kinase CK2: Evidence for a protein kinase CK2b subunit fraction, devoid of the catalytic CK2a subunit, in mouse brain and testicles. FEBS Letters, 462, 353-357. doi:10.1016/S0014-5793(99)01553-7

[8]   Stalter, G., Siemer, S., Becht, E., et al. (1994) Asymmetric expression of protein kinase CK2 in human kidney tumors. Biochemical and Bio-physical Research Communications, 202, 141-147. doi:10.1006/bbrc.1994.1904

[9]   Gabriel, M. and Litchfield, D.W. (2013) Protein kinase CK2: At the crossroad of pathways controlling cell proliferation and survival. In: Pinna, L.A., Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 169189.

[10]   Trembley, J.H., Wu, J., Unger, G.M., et al. (2013) CK2 suppression of apoptosis and its implication in cancer bi-ology and therapy. In: Pinna, L.A., Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 319-343.

[11]   Blaydes, J.P. and Hupp, T.R. (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene, 17, 1045-1052. doi:10.1038/sj.onc.1202014

[12]   Gerber, D.A., Sou-quere-Besse, S., Puvion, F., et al. (2000) Heat-induced relocali-zation of protein kinase CK2—Implication of CK2 in the context of cellular stress. Journal of Biological Chemistry, 275, 23919-23926. doi:10.1074/jbc.M002697200

[13]   Sayed, M., Kim, S.O., Salh, B.S., et al. (2000) Stressinduced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. Journal of Biological Chemistry, 275, 16569-16573. doi:10.1074/jbc.M000312200

[14]   Yamane, K. and Kinsella, T.J. (2005) CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. Cancer Research, 65, 4362-4367. doi:10.1158/0008-5472.CAN-04-3941

[15]   Manni, S., Bran-calion, A., Quotti, T.L., et al. (2012) Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clinical Cancer Research, 18, 1888-1900. doi:10.1158/1078-0432.CCR-11-1789

[16]   Faust, M., Jung, M., Günther, J., et al. (2001) Localization of individual subunits of protein kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus. Molecular and Cellular Biochemistry, 227, 73-80. doi:10.1023/A:1013129410551

[17]   Gruss, O.J., Feick, P., Frank, R., et al. (1999) Phosphorylation of components of the ER translocation site. European Journal of Biochemistry, 260, 785-793. doi:10.1046/j.1432-1327.1999.00215.x

[18]   Götz, C., Müller, A., Montenarh, M., et al. (2009) The ER-membrane-resident Hsp40 ERj1 is a novel substrate for protein kinase CK2. Bio-chemical and Biophysical Research Communications, 388, 637-642. doi:10.1016/j.bbrc.2009.07.146

[19]   Ampofo, E., Welker, S., Jung, M., et al. (2013) CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochimica et Biophysica Acta, 1830, 2938-2945. doi:10.1016/j.bbagen.2012.12.020

[20]   Hosoi, T., Korematsu, K., Horie, N., et al. (2012) Inhibition of casein kinase 2 mod-ulates XBP1-GRP78 arm of unfolded protein responses in cul-tured glial cells. PLoS. ONE, 7, e40144. doi:10.1371/journal.pone.0040144

[21]   Meggio, F., Agostinis, P. and Pinna, L.A. (1985) Casein kinases and their protein sub-strates in rat liver cytosol: evidence for their participation in multimolecular systems. Biochimica et Biophysica Acta, 846, 248-256. doi:10.1016/0167-4889(85)90072-2

[22]   Dougherty, J.J., Ra-bideau, D.A., Iannotti, A.M., et al. (1987) Identification of the 90 kDa substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochimica et Biophysica Acta, 927, 74-80. doi:10.1016/0167-4889(87)90067-X

[23]   Miyata, Y. and Ya-hara, I. (1995) Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry, 34, 8123-8129. doi:10.1021/bi00025a019

[24]   Miyata, Y. and Yahara, I. (2002) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. Journal of Biological Chemistry, 267, 7042-7047.

[25]   Miyata, Y. (2013) The pivotal role of CK2 in the kinome-targeting Hsp90 chaperone machinery. In: Pinna, L.A. Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Ho-boken, 205-238.

[26]   Gorman, A.M., Healy, S.J., Jager, R., et al. (2012) Stress management at the ER: Regulators of ER stress-induced apoptosis. Pharmacology and Therpeutics, 134, 306-316. doi:10.1016/j.pharmthera.2012.02.003

[27]   Guerra, B. and Issinger, O.-G. (2013) CK2: A global regulator of cell survival. In: Pinna, L.A. Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 239266.

[28]   Harding, H.P., Zhang, Y. and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397, 271-274. doi:10.1038/16729

[29]   Niefind, K. and Battistutta, R. (2013) Structural bases protein kinase CK2 function and inhibition. In: Pinna, L.A. Ed., Protein Kinase CK2, John Wiley & Sons, Inc., Hoboken, 3-75.

[30]   Sarno, S., Reddy, H., Meggio, F., et al. (2001) Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (casein kinase-2’). FEBS Letters, 496, 44-48. doi:10.1016/S0014-5793(01)02404-8

[31]   Cozza, G., Mazzo-rana, M., Papinutto, E., et al. (2009) Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochemical Journal, 421, 387-395. doi:10.1042/BJ20090069

[32]   Ampofo, E., Sokolowsky, T., Götz, C., et al. (2013) Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response. Biochimica et Biophysica Acta: Molecular Cell Research, 1833, 439-451.

[33]   Schroder, M. and Kaufman, R.J. (2005) The mammalian unfolded protein response. Annual Reviews in Biochemistry, 74, 739-789.

[34]   Harding, H.P., Novoa, I., Zhang, Y., et al. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell, 6, 10991108. doi:10.1016/S1097-2765(00)00108-8

[35]   Schneider, C.C., Ampofo, E. and Montenarh, M. (2012) CK2 regulates ATF4 and CHOP transcription within the cellular stress response signalling pathway. Cell Signalling, 24, 1797-1802.

[36]   Hessenauer, A., Schneider, C.C., Götz, C., et al. (2011) CK2 inhibition induces apoptosis via the ER stress response. Cell Signalling, 23, 145-151. doi:10.1016/j.cellsig.2010.08.014

[37]   Ubeda, M. and Habener, J.F. (2000) CHOP gene expression in response to endoplas-mic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Research, 28, 49874997. doi:10.1093/nar/28.24.4987

[38]   Ubeda, M. and Habener, J.F. (2003) CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation. Journal of Biological Chemistry, 278, 40514-40520. doi:10.1074/jbc.M306404200

[39]   Yoshida, H., Matsui, T., Yamamoto, A., et al. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107, 881-891. doi:10.1016/S0092-8674(01)00611-0

[40]   Asada, R., Kane-moto, S., Kondo, S., et al. (2011) The signaling from endop-lasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. Journal of Biochemistry, 149, 507-518. doi:10.1093/jb/mvr041