[1] E. Uhlmann and M. Roeder, “Internal Cooling of Cutting Tools,” Lambda Map Conference, London, July 2009.
[2] F. Klocke, “Dry Cutting, Keynote Paper,” Annals of the CIRP, Vol. 46, No. 2, 1997, pp. 519-526.
[3] V. P. Astakhov, “Effects of the Cutting Feed, Depth of Cut, and Workpiece (Bore) Diameter on the Tool Wear Rate,” International Journal of Advanced Manufacturing Technology, Vol. 34, No. 7-8, 2007, pp. 631-640.
[4] E. Dimla Jr., P. E. Lister and N. J. Leighton, “Neural Network Solutions to the Tool Condition Monitoring Problem in Metal Cutting—A Critical Review of Methods,” International Journal of Machine Tools and Manufacture, Vol. 37, No. 9, 1997, pp. 1291-1241.
[5] D. A. Dornfield, “Neural Network Sensor Fusion for Tool Condition Monitoring,” Annals CIRP, Vol. 39, No. 1, 1990, pp. 101-105. doi:10.1016/S0007-8506(07)61012-9
[6] T. I. Liu and E. J. Ko, “On-Line Recognition of Drill Wear via Artificial Neural Networks,” Winter Annual Meeting of the ASME, Monitoring and Control for Manufacturing Processes, Vol. 44, Dallas, 1990, p. 101.
[7] S. Purushothaman and Y. G. Srinivasa, “A Back Propogation Algorithm Applied to Tool Wear Monitoring,” International Journal of Machine Tools and Manufacture, Vol. 34, No. 5, 1994, pp. 625-631.
[8] Q. Liu and Y. Altintas “On-Line Monitoring of Flank Wear in Turning with Multilayered Feed-Forward Neural Networks,” International Journal of Machine Tools and Manufacture, Vol. 39, No. 12, 1994, pp. 1945-1959. doi:10.1016/S0890-6955(99)00020-6
[9] L. I. Burke and S. Rangwala, “Tool Condition Monitoring in Metal Cutting: A Neural Network Approach,” Journal of Intelligent Manufacturing, Vol. 2, No. 5, 1991, pp. 269-280. doi:10.1007/BF01471175
[10] L. I. Burke, “Competetive Learning Approaches to Tool Wear Identification,” IEEE Transactions on System, Man and Cybernetics, Vol. 22, No. 3, 1992, pp. 559-563.
[11] A. Ruiz, D. Guinea, J. Barrios and F. Betancourt, “An Empirical Multi-Sensor Estimation of Tool Wear,” Mechanical Systems and Signal Processing, Vol. 7, No. 2, 1993, pp. 105-119.
[12] Q. Zhou, G. S. Hong and M. Rahman, “A New Tool Wear Criterion for Tool Condition Monitoring using Neural Networks,” Engineering Applications of Artificial Intelligence, Vol. 8, No. 5, 1995, pp. 579-588. doi:10.1016/0952-1976(95)00031-U
[13] Q. Zhou, G. S. Hong and M. Rahman, “On-Line Cutting State Recognition in Turning Using a Neural Network,” International Journal of Advanced Manufacturing Technology, Vol. 10, No. 2, 1995, pp. 87-92. doi:10.1007/BF01179276
[14] Q. Zhou, G. S. Hong and M. Rahman, “Using Neural Networks for Tool Condition Monitoring Based on Wavelet Decomposition,” International Journal of Machine Tools and Manufacture, Vol. 36, No. 5, 1996, pp. 551-566. doi:10.1016/0890-6955(95)00067-4
[15] M. Guillot and A. El Ouafi, “On-Line Identification of Tool Breakage in Metal Cutting Processes by Use of Artificial Neural Networks,” Proceedings of ANNIE 91, St Louis, 10 November 1991, p. 701.
[16] Y. I. Yao and X. Fang, “Assessment of Chip Forming Patterns with Tool Wear Progression in Machining via Neural Networks,” International Journal of Machine Tools and Manufacture, Vol. 33, No. 1, 1993, pp. 89-102.
[17] S. Zurek, A. J. Moses, M. Packianather, P. Anderson and F. Anayi, “Prediction of Power Loss and Permeability with the Use of an Artificial Neural Network in Wound Toroidal Cores,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 20, 2008, pp. 1001-1005.
[18] S. Y. Liang, et al., “Machining Process Monitoring and Control: The State-of-the-Art,” Journal of Manufacturing Science and Engineering, Vol. 126, No. 2, 2004, pp. 297-310.
[19] M. A. Davies, et al., “On the Measurement of Temperature in Material Removal Processes,” Annals of CIRP, Vol. 56, No. 2, 2007, pp. 581-604.
[20] X. Sun, R. Bateman, K. Cheng and S. C. Ghani, “Design and Analysis of an Internally-Cooled Smart Cutting Tool for Dry Cutting,” Journal of Engineering Manufacture, 2011.